Jump to content

Is such a matrix possible?

Featured Replies

I want a matrix W of size nxk (where n>>k) with the following two properties:

1. Sum of all elements of each row is equal to one, i.e. Sumj wij = 1 for all i.
2. Sum of squares of all elements of each column is equal to one, i.e. Sumi wij2 = 1 for all j.
Is such a matrix possible? Any hint at how to prove one way or the other would be appreciated. Thanks in advance.

Sure. A trivial example would be [math]w_{i1}=1[/math], and [math]w_{ij}=0[/math] for all [math]j\neq 1[/math].

Sure. A trivial example would be [math]w_{i1}=1[/math], and [math]w_{ij}=0[/math] for all [math]j\neq 1[/math].

How does that satisfy the second property?

 

Are negative numbers allowed?

=Uncool-

How does that satisfy the second property?

 

Are negative numbers allowed?

=Uncool-

 

Because 12=1, and the rest of the elements in the row are zero. So [math]\sum_j (w_{ij})^2=1^2+0^2+0^2+...+0^2=1[/math].

 

EDIT: You're right, I read the question wrong. The simplest matrix I can think of which satisfies 1. and 2. is the identity matrix, but that doesn't satisfy the condition that n>>k.

Edited by elfmotat

It's a bit cheesy, but if you let [math]n=k^2[/math] and set every element to [math]\frac{1}{k}[/math], then for sufficiently large [math]k[/math] you'll have such a matrix.

It's a bit cheesy, but if you let [math]n=k^2[/math] and set every element to [math]\frac{1}{k}[/math], then for sufficiently large [math]k[/math] you'll have such a matrix.

 

Condition 1. is satisfied by setting every element to [math]1/k[/math], but condition 2. is only satisfied if [math]n/k=1[/math], i.e [math]n=k[/math] in which case the condition that [math]n\gg k[/math] is not satisfied.

Condition 1. is satisfied by setting every element to [math]1/k[/math], but condition 2. is only satisfied if [math]n/k=1[/math], i.e [math]n=k[/math] in which case the condition that [math]n\gg k[/math] is not satisfied.

 

I'm not sure I follow. If we have an [math]n \times k[/math] matrix with [math]n=k^2[/math] and each element set to [math]\frac{1}{k}[/math], then each column will consist of [math]k^2[/math] elements of [math]\frac{1}{k}[/math] each. Since condition 2 deals with the sum of the squares along each column, we end up with [math]k^2 \left(\frac{1}{k^2}\right) =1[/math], as condition 2 requires.

Edited by John

I'm not sure I follow. If we have an [math]n \times k[/math] matrix with [math]n=k^2[/math] and each element set to [math]\frac{1}{k}[/math], then each column will consist of [math]k^2[/math] elements of [math]\frac{1}{k}[/math] each. Since condition two deals with the sum of the squares along each column, we end up with [math]k^2 \left(\frac{1}{k^2}\right) =1[/math], as condition 2 requires.

 

Nevermind, you're right. Fortunately/unfortunately I'm a bit intoxicated at the moment.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.