Jump to content

Dirac Delta Residue?

Featured Replies

Does the Dirac Delta function have a residue? I feel like it should, considering the close parallels between delta function integral identities and theorems in complex analysis, namely the Cauchy integral formula and residue theory. I'm unsure exactly how they tie together (if they do).

Edited by elfmotat

I am not sure either, but I think you would need to extend the Dirac delta to the complex plane and then examine the poles. This sounds like something someone will have examined for sure.

I am not sure either, but I think you would need to extend the Dirac delta to the complex plane and then examine the poles. This sounds like something someone will have examined for sure.

The Dirac delta already makes sense on the complex plane - however, the idea of residues would need to be extended to some subset of the set of distributions, rather than only dealing with (ratios of) functions.

 

One property that it should have: the residue of any derivative should be 0, as can be seen by examining the Laurent series or using the residue theorem.

=Uncool-

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.