Jump to content

Weierstrass Substitution

Featured Replies

[latex]\displaystyle \int \frac{dx}{a\sin x + b\cos x + c\tan x} \hspace{10mm}a,b,c \in \mathbb{R} \ne 0[/latex]

 

[latex]let \; t = \tan \left(\frac{x}{2}\right) \Rightarrow dt = \frac{1}{2} \sec^2 \left(\frac{x}{2}\right) dx[/latex]

 

[latex]\Rightarrow dx = \frac{2\, dt}{\sec^2\left(\frac{x}{2}\right)} = \frac{2\, dt}{1+ t^2}[/latex]

 

[latex]\sin \left(\frac{x}{2}\right) = \frac{t}{\sqrt{1 + t^2}}[/latex]

 

[latex]\cos \left(\frac{x}{2}\right) = \frac{1}{\sqrt{1 + t^2}}[/latex]

 

[latex]\Rightarrow \sin x = 2\sin \left(\frac{x}{2}\right) \cos \left(\frac{x}{2}\right) = \frac{2t}{1 + t^2}[/latex]

 

[latex]\Rightarrow \cos x = \cos^2 \left(\frac{x}{2}\right) - \sin^2 \left(\frac{x}{2}\right) = \frac{1-t^2}{1+t^2}[/latex]

 

[latex]\Rightarrow \tan x = \frac{2\tan \left(\frac{x}{2}\right)}{1-\tan^2 \left(\frac{x}{2}\right)} = \frac{2t}{1-t^2}[/latex]

 

[latex]\Rightarrow \displaystyle \int \frac{\frac{2\, dt}{1 + t^2}}{\frac{2at}{1 +t^2} + \frac{b(1-t^2)}{1 + t^2} + \frac{2ct}{1-t^2}}[/latex]

 

[latex]\Rightarrow \displaystyle \int \frac{2\, dt}{2at + b(1-t^2) + \frac{2ct(1+t^2)}{1-t^2}}[/latex]

 

Where does one go from here? I multiplied numerator and denominator by 1-t^2 but that just left me with a quadratic over a quartic - I suppose I could try partial fractions but the quartic would be difficult to factorise.

 

P.S. This is not a homework problem, just me "doodling".

Edited by x(x-y)

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.