Jump to content

General Integral

Featured Replies

I was just messing around with integrals to see if I could derive a general solution of this integral:

 

[latex]I = \displaystyle \int \frac{dx}{\sqrt{c+bx+ax^2}}[/latex]

 

and I was wondering if anybody could confirm my result.

 

[latex]c+bx+ax^2 \Rightarrow c + a\left(x^2 + \frac{b}{a}x\right)[/latex]

 

[latex]c+a\left[\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}\right][/latex]

 

[latex]\Rightarrow \left(c-\frac{b^2}{4a}\right)+a\left(x+\frac{b}{2a}\right)^2[/latex]

 

[latex]\Rightarrow \displaystyle \int \frac{dx}{\sqrt{\left(c-\frac{b^2}{4a}\right)+a\left(x+\frac{b}{2a}\right)^2}}[/latex]

 

[latex]\Rightarrow \frac{1}{\sqrt{c-\frac{b^2}{4a}}} \displaystyle \int \frac{dx}{\sqrt{1+\left(\sqrt{\frac{a}{c-\frac{b^2}{4a}}}\left(x+\frac{b}{2a}\right)\right)^2}}[/latex]

 

then let

 

[latex]\sinh t = \sqrt{\frac{a}{c-\frac{b^2}{4a}}}\left(x+\frac{b}{2a}\right)[/latex]

 

[latex]\Rightarrow dx = \sqrt{\frac{c-\frac{b^2}{4a}}{a}} \hspace{2mm} d(\sinh t)[/latex]

 

and we know that

 

[latex]d(\sinh t) = \cosh t \; dt[/latex]

 

So, substituting these terms into the integral gives

 

[latex]\frac{1}{\sqrt{a}} \displaystyle \int \frac{\cosh t \; dt}{\sqrt{1 + \sinh^2 t}} \Rightarrow \frac{1}{\sqrt{a}} \displaystyle \int \frac{\cosh t \; dt}{\cosh t}[/latex]

 

[latex]\Rightarrow \frac{1}{\sqrt{a}}t + C[/latex]

 

[latex]\therefore I = \frac{1}{\sqrt{a}} \sinh^{-1} \left(\sqrt{\frac{a}{c-\frac{b^2}{4a}}}\left(x+\frac{b}{2a}\right)\right)+C[/latex]

 

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.