Jump to content

Physical interpretation of the density matrix in specific representation

Featured Replies

Any textbook gives the interpretation of the density matrix in a SINGLE continuous basis [math]|\alpha\rangle[/math]:

 

  • The diagonal elements [math]\rho(\alpha,\alpha) = \langle\alpha| \hat{\rho} |\alpha\rangle[/math] give the populations.
  • The off-diagonal elements [math]\rho(\alpha,\alpha') = \langle\alpha| \hat{\rho} |\alpha'\rangle[/math] give the coherences.

But what is the physical interpretation (if any) of the density matrix [math]\rho(\alpha,\beta) = \langle\alpha| \hat{\rho} |\beta\rangle[/math] for a DOUBLE continuous basis [math]|\alpha\rangle[/math], [math]|\beta\rangle[/math]?

 

I already know that when the double basis are momentum [math]|p\rangle[/math] and position [math]|x\rangle[/math], then [math]\rho(p,x)[/math] (the well-known Wigner function) is interpreted as a pseudo-probability. I may confess that I have never completely understood the concept of pseudo-probability [*], but I would like to know if this physical interpretation as pseudo-probability can be extended to arbitrary continuous basis [math]|\alpha\rangle[/math], [math]|\beta\rangle[/math] for non-commuting operators [math]\hat{\alpha}[/math], [math]\hat{\beta}[/math] and if a probability interpretation holds for commuting operators.

 

I.e. can [math]\rho(\alpha,\beta)[/math] be interpreted as a pseudo-probability for arbitrary non-commuting operators beyond x and p? Can [math]\rho(\alpha,\beta)[/math] be interpreted as a probability for arbitrary commuting operators?

 

[*] Specially because [math]\rho(p,x)[/math] is bounded and cannot be 'spike'.

Edited by juanrga

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.