Jump to content

Quadratic equation

Featured Replies

The equation [math](px)^2 + 3qx + 4 = 0 [/math] has two equal roots. Given that [math]p > 0[/math] and [math]q > 0[/math], find [math]p : q[/math].

 

my progression:-

[math]p^2x^2 + 3qx + 4 = 0 [/math]

 

where [math]x = a[/math] (two equal roots)

 

[math](x-a)^2 = 0[/math]

 

[math]x^2 - 2ax + a^2 = 0[/math]

compare

[math]p^2x^2 + 3qx + 4 = 0 [/math]

 

[math]a^2 = 4[/math]

 

[math]a = \pm2[/math]

 

if [math]a = 2[/math]

 

[math]-2a = 3q[/math] (compare)

 

[math]-4 = 3q[/math]

 

[math]q = \frac{-4}{3}[/math]

 

[math]\pm[/math] effect ( if a = -2)

 

[math]q = \pm\frac{4}{3}[/math]

 

but, q > 0, so no minus

 

[math]q = \frac{4}{3}[/math]

 

[math]p^2x^2 + 4x + 4 = 0[/math]

 

discriminant (two equal roots)

[math]4^2 - 4(p^2)(4) = 0[/math]

 

[math]16- 16p^2 = 0[/math]

 

[math] p = \pm 1[/math]

but, p > 0, so no minus

 

[math] p = 1[/math]

 

answer on the book

[math]p : q = 3 : 4[/math]

 

 

anyone can help? :(

 

edit: p^2 + 3qx + 4 = 0, sorry about the typo :/

Edited by Vastor

Didn't read much further than this:

[math]x^2 - 2ax + a^2 = 0[/math]

compare

[math]p^2 + 3qx + 4 = 0 [/math]

But you missed an [math]x^2[/math] and had a couple of odd things on later lines that looked related.

 

Try getting the given equation to look more like your expansion of [math](x-a)^2[/math]

 

[math]x^2 + \frac{3q}{p^2}x + \frac{4}{p^2} = 0[/math]

 

So:

[math] \frac{3q}{2p^2} = a [/math] and [math] \frac{\pm 2}{p} = a[/math]

 

[math]\implies \frac{3q}{2p^2} = \frac{\pm 2}{p}\; \implies\; 3q = \pm 4p[/math]

 

The [math]\pm[/math] must be + or we don't have both p and q > 0.

  • Author

Didn't read much further than this:

 

But you missed an [math]x^2[/math] and had a couple of odd things on later lines that looked related.

 

not really, just typo transferring from the paper that I used to calculate, and not missing any [math]x^2[/math] there

 

Try getting the given equation to look more like your expansion of [math](x-a)^2[/math]

 

[math]x^2 + \frac{3q}{p^2}x + \frac{4}{p^2} = 0[/math]

 

So:

[math] \frac{3q}{2p^2} = a [/math] and [math] \frac{\pm 2}{p} = a[/math]

 

[math]\implies \frac{3q}{2p^2} = \frac{\pm 2}{p}\; \implies\; 3q = \pm 4p[/math]

 

The [math]\pm[/math] must be + or we don't have both p and q > 0.

 

at

[math] \frac{\pm 2}{p} = a[/math]

 

why not the p has plusminus value when squareroot it?

 

EDIT : Ignore this post :D

Edited by Vastor

The equation [math](px)^2 + 3qx + 4 = 0 [/math] has two equal roots. Given that [math]p > 0[/math] and [math]q > 0[/math], find [math]p : q[/math].

 

[math](x-a)^2 = 0[/math]

 

[math]C(x-a)^2 = 0[/math]

Edited by DrRocket

  • Author

[math]C(x-a)^2 = 0[/math]

 

simple answer that explain all, thnx :lol:

 

hope I'm doing good now:-

[math]C(x-a)^2[/math]

[math]Cx^2 - 2aCx + Ca^2 = 0 [/math]

compare

[math]p^2x^2 - 3qx +4 = 0[/math]

[math]C = p^2[/math]

 

so, [math]p^2a^2 = 4[/math]

[math]a^2 = \frac{4}{p^2}[/math]

[math]a = \frac{\pm2}{p}[/math]

 

then, [math]-2aC = -q[/math]

[math]2(\frac{\pm2}{p})(p^2) = 3q[/math]

p, q > 0 so,

[math]2(\frac{2}{p})(p^2) = 3q[/math]

[math]4p = 3q[/math]

[math]\frac{4}{3} = \frac{q}{p}[/math]

 

another problem!<_<

 

given that [math]a[/math] and [math]b[/math] are the roots of the equation [math]3x^2 + 7x - 6 = 0[/math] where [math]a > 0[/math] and [math]b < 0[/math]. Form a quadratic equation which has the roots [math]a + 3[/math] and [math]b-2[/math].

 

my progression:-

[math]3x^2 + 7x - 6 = 0[/math]

 

[math]x^2 +\frac{7}{3}x - 2 = 0[/math]

compare

[math]x^2 - (a+b)x + ab = 0[/math]

 

so,

[math]a+b = -\frac{7}{3}[/math]

&

[math]ab = -2 [/math]

 

for,

[math]ab = -2 [/math]

 

[math]a = -\frac{2}{b} [/math]

 

and then, for

[math]a+b = -\frac{7}{3}[/math]

 

[math] -\frac{2}{b}+b = -\frac{7}{3}[/math]

 

[math] b = \frac{2}{b} - \frac{7}{3} [/math]

 

[math] b = \frac{6 - 7b}{3b} [/math]

 

[math]3b^2 + 7b - 6 = 0[/math]

 

[math](3b - 2)(b + 3) = 0[/math]

 

[math]b = \frac{2}{3}[/math]

and

[math]b = -3[/math]

 

because [math]b < 0[/math], so [math]b = -3[/math] only.

 

after that, for

[math]a = -\frac{2}{b} [/math]

 

[math]a = \frac{2}{3} [/math]

 

then,

[math]x^2 - (a+3 + b-2)x + (a+3)(b-2) = 0[/math]

 

[math]x^2 -(-\frac{7}{3} + 3-2)x + (ab+3b - 2a-6) = 0[/math]

 

[math]x^2 + \frac{4}{3}x +(-8 + 3b - 2a) = 0[/math]

 

[math]x^2 + \frac{4}{3}x +(-8 + 3(-3) - 2(\frac{2}{3})) = 0[/math]

 

[math]x^2 + \frac{4}{3}x +(-17 - (\frac{4}{3})) = 0[/math]

 

[math]x^2 + \frac{4}{3}x - \frac{55}{3} = 0[/math]

 

[math]3x^2 + 4x - 55 = 0[/math]

 

and the answer is

 

[math]3x^2 + 4x - 55 = 0[/math]

 

yes, it's the same :P

 

but I just can't figured out how does the [math]b = \frac{2}{3} = a[/math] or it's just a coincidence?! :huh:

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.