Jump to content

trying to understand neutrino oscillations

Featured Replies

Neutrinos only interact Weakly. Er go, neutrinos are generated into Weak eigenstates, which are "mixtures" of the canonical mass eigenstates; and neutrinos remain in those Weak eigenstates, until detection. For example, electron neutrinos [math]\nu_e[/math] are a mixed Weak eigenstate, representing a mixture of the neutrino mass eigenstates [math]\nu_1, \nu_2, \nu_3[/math], specifically

 

[math]|\nu_e> \approx 0.9 |\nu_1> + 0.5 |\nu_2>[/math]

The following analysis employs normalized units [math]c \rightarrow 1[/math]; and assumes that the neutrino mass eigenstates, are also eigenstates, of mass [math]\left( \hat{m} \right)[/math], momentum [math]\left( \hat{p} \right)[/math], & squared-energy [math]\left( \hat{E}^2 \right)[/math].

 

 

take 1

 

How can such a Weak eigenstate possess a well-defined energy & momentum ? For, if

 

[math]m \equiv \alpha m_1 + \beta m_2[/math]

 

[math]E \equiv \alpha E_1 + \beta E_2[/math]

 

[math]p \equiv \alpha p_1 + \beta p_2[/math]

then

 

[math]E^2 = m^2 + p^2[/math]

 

[math]\left( \alpha E_1 + \beta E_2 \right)^2 = \left( \alpha m_1 + \beta m_2 \right)^2 + \left( \alpha p_1 + \beta p_2 \right)^2[/math]

 

[math]\begin{array}{c}

\alpha^2 E_1^2 + \beta^2 E_2^2 \\

+ 2 \alpha \beta E_1 E_2 \end{array} = \begin{array}{c}

\alpha^2 m_1^2 + \beta^2 m_2^2 \\

+ 2 \alpha \beta m_1 m_2 \end{array} + \begin{array}{c}

\alpha^2 p_1^2 + \beta^2 p_2^2 \\

+ 2 \alpha \beta p_1 p_2 \end{array}[/math]

 

[math]\therefore E_1 E_2 = m_1 m_2 + p_1 p_2[/math]

But w.h.t.

 

[math]E = \gamma m[/math]

[math]p = \gamma m \beta = \beta E[/math]

So

 

[math]E_1 E_2 = m_1 m_2 + p_1 p_2[/math]

 

[math]\gamma_1 \gamma_2 = 1 + \gamma_1 \beta_1 \gamma_2 \beta_2[/math]

[math]\gamma_1 \gamma_2 \left(1 - \beta_1 \beta_2 \right) = 1[/math]

[math]\left(1 - \beta_1 \beta_2 \right)^2 = \left(1 - \beta_1^2 \right) \left( 1 - \beta_2^2 \right)[/math]

[math]\begin{array}{c}

1 + \beta_1^2 \beta_2^2 \\

- 2 \beta_1 \beta_2 \end{array} = \begin{array}{c}

1 + \beta_1^2 \beta_2^2 \\

- 2 \beta_1^2 \beta_2^2 \end{array}[/math]

[math]1 = \beta_1 \beta_2[/math]

 

[math]\therefore 1 = \beta_1 = \beta_2[/math]

But, neutrinos have mass, i.e. [math]\beta_{1,2} < 1[/math].

 

 

take 2

 

Are "Weak neutrinos", i.e. neutrinos in Weak eigenstates, "off mass shell" ? For, if:

 

[math]|\nu_e> = \alpha |\nu_1> + \beta |\nu_2>[/math]

then is the mass expectation value:

 

[math]<m_{\nu_e}> = \left( \alpha^* <\nu_1| + \beta^* <\nu_2| \right) \hat{m} \left( \alpha |\nu_1> + \beta |\nu_2> \right)[/math]

 

[math]= |\alpha|^2 <\nu_1|\hat{m}|\nu_1> + |\beta|^2 <\nu_2|\hat{m}|\nu_2>[/math]

 

[math]= |\alpha|^2 <m_1> +|\beta|^2 <m_2>[/math]

 

[math]\equiv |\alpha|^2 m_1 +|\beta|^2 m_2[/math]

 

[math]\therefore m_{\nu_e} \approx \frac{3}{4} m_1 + \frac{1}{4} m_2[/math]

or is the momentum expectation value:

 

[math]<p_{\nu_e}> = \left( \alpha^* <\nu_1| + \beta^* <\nu_2| \right) \hat{p} \left( \alpha |\nu_1> + \beta |\nu_2> \right)[/math]

 

[math]= |\alpha|^2 <\nu_1|\hat{p}|\nu_1> + |\beta|^2 <\nu_2|\hat{p}|\nu_2>[/math]

 

[math]= |\alpha|^2 <p_1> +|\beta|^2 <p_2>[/math]

 

[math]\equiv |\alpha|^2 p_1 +|\beta|^2 p_2[/math]

 

[math]\therefore p_{\nu_e} \approx \frac{3}{4} p_1 + \frac{1}{4} p_2[/math]

or is the squared-energy expectation value:

 

[math]<E_{\nu_e}^2> = \left( \alpha^* <\nu_1| + \beta^* <\nu_2| \right) \left[ \hat{p}^2 + \hat{m}^2 \right] \left( \alpha |\nu_1> + \beta |\nu_2> \right)[/math]

 

[math]= |\alpha|^2 <\nu_1|\left[ \hat{p}^2 + \hat{m}^2 \right]|\nu_1> + |\beta|^2 <\nu_2|\left[ \hat{p}^2 + \hat{m}^2 \right]|\nu_2>[/math]

 

[math]= |\alpha|^2 <E_1^2> +|\beta|^2 <E_2^2>[/math]

 

[math]\equiv |\alpha|^2 E_1 +|\beta|^2 E_2[/math]

 

[math]\therefore E_{\nu_e}^2 \approx\frac{3}{4} E_1^2 + \frac{1}{4} E_2^2[/math]

??? If so, then Weak neutrinos are "off mass shell", i.e. [math]E_{\nu_e}^2 \ne m_{\nu_e}^2 + p_{\nu_e}^2[/math], i.e.

 

[math]m_{\nu_e}^2 + p_{\nu_e}^2 = \left( |\alpha|^2 m_1 +|\beta|^2 m_2 \right)^2 + \left( |\alpha|^2 p_1 +|\beta|^2 p_2 \right)^2[/math]

 

[math]= \begin{array}{c}

|\alpha|^4 m_1^2 +|\beta|^4 m_2^2 \\

+ 2 |\alpha|^2 |\beta|^2 m_1 m_2 \end{array} + \begin{array}{c}

|\alpha|^4 p_1^2 +|\beta|^4 p_2^2 \\

+ 2 |\alpha|^2 |\beta|^2 p_1 p_2 \end{array}[/math]

 

[math]= |\alpha|^4 E_1^2 +|\beta|^4 E_2^2 + 2 |\alpha|^2 |\beta|^2 \left( m_1 m_2 + p_1 p_2 \right)[/math]

 

[math]= |\alpha|^2 \left(|\alpha|^2 \right)^2 E_1^2 +|\beta|^2 \left( |\beta|^2 \right)^2 E_2^2 + 2 |\alpha|^2 |\beta|^2 \left( m_1 m_2 + p_1 p_2 \right)[/math]

 

[math]= |\alpha|^2 \left(1 - |\beta|^2 \right)^2 E_1^2 +|\beta|^2 \left(1 - |\alpha|^2 \right)^2 E_2^2 + 2 |\alpha|^2 |\beta|^2 \left( m_1 m_2 + p_1 p_2 \right)[/math]

 

[math]= \left( |\alpha|^2 E_1^2 +|\beta|^2 E_2 \right) - |\alpha|^2 |\beta|^2 \left( \left( E_1^2 + E_2^2 \right) - 2 \left( m_1 m_2 + p_1 p_2 \right)\right) [/math]

 

[math]= E_{\nu_e}^2 - |\alpha|^2 |\beta|^2 \left( \left( E_1^2 + E_2^2 \right) - 2 \left( m_1 m_2 + p_1 p_2 \right)\right) [/math]

 

[math]= E_{\nu_e}^2 - |\alpha|^2 |\beta|^2 \left( \left( m_1^2 + p_1^2 + m_2^2 + p_2^2 \right) - 2 \left( m_1 m_2 + p_1 p_2 \right)\right) [/math]

 

[math]= E_{\nu_e}^2 - |\alpha|^2 |\beta|^2 \left( \left(m_1-m_2 \right)^2 + \left(p_1-p_2 \right)^2 \right) [/math]

 

[math]\approx E_{\nu_e}^2 - \frac{3}{16} \left( \left(m_2-m_1 \right)^2 + \left(p_2-p_1 \right)^2 \right) [/math]

If so, then [math]E_{\nu_e}^2 > m_{\nu_e}^2 + p_{\nu_e}^2[/math], i.e. "electron neutrinos are energy rich" (by a few eV ?).

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.