Jump to content

Implementation of psuedo-arclength continuation

Featured Replies

Hi there,

 

I have a quick question regarding pseudo-arclength continuation. As some background, I am a chemical engineer, not a mathematician, applied or otherwise, so my knowledge of numerical methods is limited to the "standard" stuff.

 

I've been reading up as extensively as I can on pseudo-arclength continuation, but unfortunately, it's all from second-hand sources; I don't have access to Keller's original paper. Here's what I understand at this point:

 

We want to solve a problem [math]F(x,\lambda)=0[/math]. We assume that the solution is known at [math]x^0[/math] and [math]\lambda^0[/math]. To avoid the singularity of the Jacobian, and therefore the breakdown of Newton's method, at turning points, [math]x[/math] and [math]\lambda[/math] both become parameterised by arclength ([math]s[/math]), and we end up with an augmented system of equations to solve:

 

[math]F(x,\lambda)=0[/math]

[math]\left(u-u^{0}\right)\mathrm{d}u^{0}/\mathrm{d}s+\left(\lambda-\lambda^{0}\right)\mathrm{d}\lambda^{0}/\mathrm{d}s-\Delta S=0[/math]

 

While this seems simple enough, how does one obtain the derivatives w.r.t [math]s[/math]? Not a single text seems to mention this. Ideas that spring to mind are forward differences using, say, cubic splines; however, that seems horrendously inefficient to me. There must be a better way!

 

Thanks,

TM

  • 2 weeks later...
  • Author

I found the answer: a procedure is described in Kubicek's Algorithm 502 in ACM Trans. Math. Software. dl.acm.org/citation.cfm?id=355675

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.