Jump to content

First stars from collision-triggered collapses ?

Featured Replies

Could some sort of "primordial turbulence" have imparted motion, to collapsing cloud 'clumps', so that their collisions could have triggered star-formation bursts (w/o need for as much DM) ??

  • Author

could 'MACHOs' account for halo DM distributions ?

 

Assuming a power-law IMF, for the 'particles', w.h.t.:

 

[math]N(m) \propto m^{-\alpha}[/math]

 

[math]M = \int_{m_0}^{\infty} C m^{1-\alpha} dm = - C m_0^{2-\alpha} \frac{1}{2-\alpha}[/math]

 

[math]\therefore C = ( \alpha - 2 ) \, m_0^{\alpha - 2} \, M[/math]

By the process of "mass segregation", in a 'virialized' or 'relaxed' cluster, all more massive 'particles' will 'sink' center-wards; and, all less massive 'particles' will 'float' periphery-wards. Thus, w.h.t.:

 

[math]M_{<r} = M_{>m®} = \int_{m®}^{\infty} C m^{1-\alpha} dm = M \left( \frac{m®}{m_0} \right)^{2-\alpha}[/math]

By the process of "energy equipartition", in a 'virialized' or 'relaxed' cluster, all 'particles' will have equal energies:

 

[math]\frac{1}{2} m v^2 \equiv K[/math]

 

[math]-\frac{G M_{<r} m}{r} \equiv U[/math]

 

[math]K + U \equiv \bar{E} = \frac{U}{2} = -|K|[/math]

Thus, also equating the centripetal & gravitational forces acting on the 'particles', w.h.t.:

 

[math]\frac{v^2}{r} = \frac{G M_{<r}}{r^2}[/math]

 

[math]\frac{2 |\bar{E}|}{m®} = \frac{G M_{>m®}}{r}[/math]

 

[math]2 |\bar{E}| r = G M m_0 \left( \frac{m®}{m_0} \right)^{3-\alpha}[/math]

Then, defining:

 

[math]\mu \equiv \frac{m®}{m_0}[/math]

 

[math]x \equiv \frac{r}{R}[/math]

 

[math]R \equiv \frac{2 |\bar{E}|}{G M m_0}[/math]

w.h.t.:

 

[math]x = \mu^{3 - \alpha}[/math]

Now, to determine the radial density profile, w.h.t.:

 

[math]4 \pi r^2 dr \rho® = C m®^{1-\alpha} dm[/math]

 

[math]4 \pi R^3 x^2 dx \rho(x) = ( \alpha - 2 ) M \mu^{1- \alpha } d\mu[/math]

Defining:

 

[math]\bar{\rho} \equiv \frac{M}{4 \pi R^3}[/math]

and using:

 

[math]dx = (3 - \alpha) \mu^{2 - \alpha} d\mu[/math]

then, w.h.t.:

 

[math]\rho(x) = \frac{\alpha - 2}{\alpha - 3} \; \bar{\rho} \; \mu^{2 \alpha - 6} \mu^{1- \alpha } \mu^{\alpha - 2}[/math]

 

[math]\; = \frac{\alpha - 2}{\alpha - 3} \; \bar{\rho} \; \mu^{2 \alpha - 7}[/math]

 

[math]\; = \frac{\alpha - 2}{\alpha - 3} \; \bar{\rho} \; x^{\frac{2 \alpha - 7}{3 - \alpha}}[/math]

Or, restated, w.h.t.:

 

[math]\rho(x) = \frac{\alpha - 2}{\alpha - 3} \; \bar{\rho} \; x^{- \left( {\frac{2 \alpha - 7}{\alpha - 3}} \right) }[/math]

According to these calculations, 'flat' IMF, having [math]\alpha < 7/2[/math], are not stable against dispersion, generating radial densities that increase outwards. Thus, only 'steep' IMF, having [math]\alpha > 7/2[/math], generate centrally concentrated radial density profiles. Observations, and numerical simulations, suggest that [math]\rho \propto x^{-2}[/math], which corresponds, according to these calculations, to the limit [math]\alpha \rightarrow \infty[/math]. If so, then this analysis indicates, that DM halos can be mathematically pictured, as populations of 'particles', having 'ultra steep' IMFs.

 

For example, if [math]\alpha \approx 7/2[/math], then:

 

[math]\rho(x) = 3 \; \bar{\rho}[/math]

Or, if [math]\alpha \approx 4[/math], then:

 

[math]\rho(x) = 2 \; \bar{\rho} \; x^{-1}[/math]

Actual DM radial density profiles might be more centrally concentrated, than this analysis indicates. For, according to these calculations, 'particles' of mass m always reside at radius r(m). However, actual DM 'particles' would probably possess complicated, ellipsoidal, center-trafficking orbits, which would 'statistically concentrate' more mass towards the cluster core.

Edited by Widdekind

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.