Jump to content

Division of Algebraic Expressions


Recommended Posts

Hi

 

It is well knowm by the theorem of the reminder that:

 

[math]D(x)=d(x)q(x)+r(x)[/math]

 

 

In this example:

.......................If [math](2x^{119}+1)/(x^2-x+1)[/math] then figure out the reminder.

 

Therefore I can afirm that the reminder has the form of :[math]r(x)=ax+b[/math],

because [math]d(x)>r(x)[/math] and [math]d(x)=x^2-x+1[/math]

 

And the original problem could be written as:

..................[math]2x^{119}+1=(x^2-x+1)q(x)+ax+b[/math].........(I)

 

To this point I need two solution of:[math]d(x)=0[/math]

so I can find the values of a and b.

 

According to what I think:

...............If [math](2x^{119}+1) = D(x)[/math] and [math]d(x)=(x^2-x+1)[/math]

so in order to find the solution :[math] x^2-x+1=0[/math]......(II)

.............................[math](x+1)(x^2-x+1)=0[/math]

....................................[math]x^3+1=0 [/math]

..............................................[math]x^3=-1 [/math]........(III)

.................................. replacing (III) on [math]D(x)[/math]:

....................................[math]2(-1)x^2+1= -2x^2+1 [/math]

 

.................................but in (II) we'll have: [math] -x^2=-x+1[/math]

......................................so [math]-2x^2+1=-2x+3[/math]

 

........................................finally [math]-2x+3=r(x) [/math]

........................................[math]ax+b=-2x+3[/math]

 

I just found the above anwer substituting values for another, but really would like to know

if I can find it in the form (I) below:

...................................[math]2x^{119}+1=(x^2-x+1)q(x)+ax+b.............(I)[/math]

........................................and if I try to fatorise the way I did:

..........................................[math]2x^{119}+1=(x^2-x+1)(x+1)(x+1)^{-1}q(x)+ax+b[/math]

...........................................[math]2x^{119}+1=(x^3+1)(x+1)^{-1}q(x)+ax+b[/math]

.................................................When I change x=-1

............................................... the expression: [math](x+1)^{-1}[/math] has no meaning.

 

I will appretiate if anyone can remark me if I'm making or if I made a mistake in my logic(method)

 

 

Thanks in advance, and excuse me if my coding is wrond.

Edited by giorgio
Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.