Jump to content

stars acquire slight positive charges ?

Featured Replies

At a given pressure, inside stars, for a given inward gravity, electrons, being less massive, experience less inward pull, despite their similar thermal energies, and higher velocities. I read in a book, that this means stars shed a few electrons, until their slight positive charge affords electrons a balancing EM attraction. The following equations attempt to mathematically model said effect. First, from the Virial Theorem [math]<U> = -2 <K>[/math], applied separately to the electronic, and ionic, components, of the stellar plasma, w.h.t.

 

[math]-\frac{G M m_e}{R} - \frac{Q e}{4 \pi \epsilon_0 \, R} = -2 \left( \frac{3}{2} k_B T_e \right)[/math]

 

[math]-\frac{G M <A> m_p}{R} + \frac{Q <Z> e}{4 \pi \epsilon_0 \, R} = -2 \left( \frac{3}{2} k_B T_i \right)[/math]

Now, assuming thermalization of electrons & ions, s.t. [math]T_e \approx T_i[/math], we can equate these expressions, s.t.:

 

[math]-\frac{G M m_e}{R} - \frac{Q e}{4 \pi \epsilon_0 \, R^2} = -\frac{G M <A> m_p}{R} + \frac{Q <Z> e}{4 \pi \epsilon_0 \, R}[/math]

which, after algebraic manipulations, yields (in Coulombs):

 

[math]Q = \left( \frac{4 \pi \epsilon_0}{e} \right) \left( G M m_p \right) \frac{<A>}{<Z>+1} \approx 300 \left( \frac{M}{2 M_{\odot}} \right) \frac{<A>}{<Z>+1}[/math]

since NS are [math]\approx 2 M_{\odot}[/math], characteristically (Kirshner. Extravagent Universe, p.36). For a pure H plasma, [math]A = Z = 1[/math], so that the 'plasma fraction' is ~1/2; whereas for a pure (and fully ionized) Fe plasma, characteristic of massive pre-collapse star cores (at [math]T \approx 300 keV[/math]) w.h.t. [math]<A> \approx 2 <Z>[/math], so that the 'plasma fraction' is ~2. Even in such a case, that's only 0.6 m-mol of electrons, out of an entire NS worth of mass.

 

Now, a spinning charged sphere generates a magnetic moment, and dipole-like magnetic field, of characteristic surface-strength [math]B \approx \frac{\mu_0}{4 \pi} \frac{m}{R^3}[/math], where the magnetic moment [math]m \approx \frac{Q}{2 M} L = \frac{1}{5} Q R^2 \omega[/math]. Thus, w.h.t. (in Tesla):

 

[math]B \approx \frac{1}{5} \frac{\mu_0}{4 \pi} \frac{Q \omega}{R} \approx 8 \times 10^{-6} \left( \frac{M}{2 M_{\odot}} \right) \left( \frac{R}{7 km} \right)^{-1} \left( \frac{\omega}{716 Hz} \right)[/math]

even using the most rapidly rotating pulsar observed to date. Thus, even a 1ms pulsar, would not be expected, according to these equations, to generate a surface magnetic field, in excess of 0.1G, through this method.

Edited by Widdekind

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.