Jump to content

stress energy tensor

Featured Replies

In a space time [math]5D[/math], the action for the brane [math]4D[/math] is:

 

[math] \int dx^4 \sqrt{-h}[/math]

 

In the Randall Sundrum the action for the hidden brane is:

[math] V_0\int dx^4 \sqrt{-h}[/math], where [math]V_0[/math] is the tension on the brane hidden.

 

follow the stress energy tensor

 

[math] T_{MN}= V_0 h_{uv} \delta^u_M \delta^v_N \delta(\phi)[/math], where [math]\phi[/math] is the extra dimention.

 

In other paper, where [math]T_{MN}[/math], for example in the friedman equation in http://arxiv.org/abs/hep-th/0303095v1 (page 6)...

 

[math] T_{00}= -\rho \delta(\phi)[/math]

[math] T_{ii}= p \delta(\phi)[/math]

the other component are zero.

 

I understand thar [math]\rho , p[/math] are energy density and presion

 

If , i use other embedding my energy stress tensor is

[math] T_{00}= - \delta(\phi)[/math]

[math] T_{ii}= \delta(\phi)[/math]

[math] T_{0 \phi}= \delta(\phi)[/math]

[math] T_{\phi \phi}= \delta(\phi)[/math]

 

¿can i to multiply the each component of the stress tensor by differents constants???...for example:

[math] T_{00}= - k_1 \delta(\phi)[/math]

[math] T_{ii}= k_2 \delta(\phi)[/math]

[math] T_{0 \phi}= k_3 \delta(\phi)[/math]

[math] T_{\phi \phi}= k_4 \delta(\phi)[/math]

Edited by alejandrito20

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.