Jump to content

Group theory problem

Featured Replies

Ok, let's make it more interesting!

 

Let [math]G[/math] be a group, and suppose there exist three consecutive integers: [math]n-1, n, n+1[/math] such that: [math](ab)^{n-1} = a^{n-1} b^{n-1}, (ab)^n = a^n b^n, (ab)^{n+1} = a^{n+1} b^{n+1}, \forall a,b \in G[/math]. Show that [math]G[/math] is abelian. Also show that such a conclusion needs not hold if the condition is assumed for only two consecutive integers.

 

PM me if you want the answer!

Any reason you keep posting random problems? I know you say they aren't homework, but it certainly seems like they might be.

Ok, let's make it more interesting!

 

Let [math]G[/math] be a group, and suppose there exist three consecutive integers: [math]n-1, n, n+1[/math] such that: [math](ab)^{n-1} = a^{n-1} b^{n-1}, (ab)^n = a^n b^n, (ab)^{n+1} = a^{n+1} b^{n+1}, \forall a,b \in G[/math]. Show that [math]G[/math] is abelian. Also show that such a conclusion needs not hold if the condition is assumed for only two consecutive integers.

 

 

Making it interesting would be good. But this isn't interesting -- just parlor tricks.

 

We have [math](ab)^{n-1} = a^{n-1} b^{n-1}, (ab)^n = a^n b^n, (ab)^{n+1} = a^{n+1} b^{n+1}, \forall a,b \in G[/math] and taking inverses [math](ab)^{1-n} = b^{1-n} a^{1-n}, (ab)^{-n} = b^{-n}n a^{-n}, (ab)^{-n-1} = b^{-n-1} a^{-n-1}, \forall a,b \in G[/math]

 

So

 

[math] ab = (ab)^n(ab)^{1-n} = a^nb^nb^{1-n}a^{1-n} = a^nba^{1-n}[/math]

 

[math] ab = (ab)^{n+1}(ab)^{-n} = a^{n+1}b^{n+1}b^{-n}a^{-n} = a^{n+1}ba^{-n}[/math]

 

Thus [math] a^nba^{1-n} = a^{n+1}ba^{-n}[/math] multiplying on the left by [math]a^{-n}[/math] and on the right by [math]a^n[/math] we have [math] ba=ab[/math] . QED

 

 

As to the insufficiency of two of the three conditions, consider a non-abelian group [math]G[/math] of order n, for some n. The last two conditions are satisfied. since [math] a^n=1 \ \ \forall a \in G[/math]

 

I am about through with this sort of thing.

!

Moderator Note

moved to homework help. Please read our rules and post threads in their rightful place, Obelix; don't evade our rules by posting homework problems in other forums.

I am about through with this sort of thing.

 

There, there, DrRocket! ;)

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.