Jump to content

limit

Featured Replies

Hello

The problem is

find the value of [math]\lambda[/math] for [math]\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ [/math] < 1, where

 

[math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] con [math]\lambda >0 [/math]

 

I tried to do:

[math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math]

 

[math]=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math]

 

[math]\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7........(2n+1)}{5 \cdot 7 ........(2n+1) \cdot (2n+3)}[/math]

 

[math]= ( \lambda (n+1))^2\frac{3}{(2n+3)} [/math]

 

but the Answer is [math]\lambda \in {0,2}[/math]

Edited by alejandrito20

Look at your third line of equations; you simplified your factorials incorrectly.

 

[math]\frac{(2n+1)!}{(2n+3)!}= \frac{(2n+1)(2n)...}{(2n+3)(2n+2)(2n+1)...1}[/math]

 

If you correct this you should notice that it works out correctly. However, don't forget to check your endpoints.

Edited by DJBruce

Hello

The problem is

find the value of [math]\lambda[/math] for [math]\lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ [/math] < 1, where

 

[math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math] con [math]\lambda >0 [/math]

 

I tried to do:

[math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math]

 

[math]=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math]

 

[math]\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7........(2n+1)}{5 \cdot 7 ........(2n+1) \cdot (2n+3)}[/math]

 

[math]= ( \lambda (n+1))^2\frac{3}{(2n+3)} [/math]

 

but the Answer is [math]\lambda \in {0,2}[/math]

 

 

 

If [math] a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ [/math]

 

Then

 

[math]\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}[/math]

 

[math]= (\frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!} [/math]

 

[math]= (\frac{\lambda}{1}\frac{(n+1)}{1})^2\frac{(1)}{(2n+3)(2n+2)} [/math]

 

[math]= \frac{\lambda^2 (n^2 +2n +1)}{4n^2 +10n +6)} [/math]

 

[math] = \frac {\lambda ^2}{4} \frac {n^2 +2n +1} {n^2 + \frac{5n}{2} + \frac {3}{4}}[/math] [math] \rightarrow \frac {\lambda ^2}{4}[/math] as [math] n \rightarrow \infty[/math]

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.