Jump to content

alternating series test

Featured Replies

There's something that's confusing me about what appears to be the standard form of stating the alternating series test in basic calculus. The four sources I looked up were James Stewart's CALCULUS, Howard Anton's CALCULUS, wolfram alpha's mathworld, and wikipedia. All four had essentially the same statement for the alternating series test:

 

If the sum from i=0 to infinity of [(-1)^n][b_n], with b_n>0 for all n, satisfies a) b_(n+1)<=b_n for all n ({b_n} is a decreasing sequence), and b) the limit as n goes to infinity of b_n = 0, then the series is convergent.

 

What I'm confused about is this: since all four sources made it clear that all of the b_n were strictly greater than zero and that b_n->0 as n goes to infinity, what is the point of also adding part a)? Why add that {b_n} must be monotonically decreasing (in the less-than-or-equal-to sense)? It seems to me that b_n>0 for all n and b_n->0 as n goes to infinity implies that {b_n} must be monotonically decreasing (in the less-than-or-equal-to sense).

 

So it seems to me that all four sources should have left out the part about b_(n+1)<=b_n for all n. Am I missing something simple here? It seems to me that the needed counterexample is that of a sequence of real numbers, all greater than zero, which go to zero, but which are not eventually decreasing, which I'm pretty sure is impossible.

 

I would appreciate it if some1 could clearly show that b), coupled with b_n>0 for all n, doesn't imply a) so I can be confident that it is necessary to state a) in the statement of the test.

 

Thanks in advance.

It seems to me that the needed counterexample is that of a sequence of real numbers, all greater than zero, which go to zero, but which are not eventually decreasing, which I'm pretty sure is impossible.

 

 

a_n = 1/n for n odd a_n=1/(2^n) for n even

  • Author

Your example is very clear. I understand now why both conditions are necessary. thank you.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.