Jump to content

Puzzle on the course “Theory of the numbers”

Featured Replies

Puzzle on the course “Theory of the numbers”

 

Theorem

 

If integers a, b, a+b and r are mutually-prime, then there is such d, relatively prime with r, that the ends of the numbers ad and bd are equal on the module r.

 

***

 

[Consequence. With relatively prime a, b, a+b and r, where the value r is undertaken from the equality:

1*) [math]a^n+b^n=(a+b)r^n=c^n[/math] or [math]a^n+b^n=(a+b)nr^n=c^n[/math], equality 1* is contradictory in the base r, since in the equality

2*) [math](ad)^n+(bd)^n=(cd)^n[/math] ([math]=Pr[/math]) right side is divided by r, but leftist is not divided.]

 

Proof is located in the stage of formulation.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.