Jump to content

Flavor Oscillations in Pions, Eta Mesons ??

Featured Replies

The "(pseudo)scalar" (S=0) mesons, [math]\pi^0 = (u \bar{u} - d \bar{d})/ \sqrt{2}[/math] and [math]\eta = (u \bar{u} + d \bar{d} - 2 s \bar{s})/ \sqrt{6}, \eta^{'} = (u \bar{u} + d \bar{d} + s \bar{s})/ \sqrt{3}[/math] contain contributions from d,u,s type quarks, in a Spin anti-parallel configuration. Thus, with their Spins separated by 1 unit, the individual quarks comprising those mesons could (hypothetically) emit, absorb, & exchange W-Bosons.

 

Is it possible, that the reason why those mesons are not "pure" [math]d \bar{d}, u \bar{u}, s \bar{s}[/math] states, but rather admixtures of them, is b/c the individual quarks comprising those mesons are (actually) undergoing Weak Force interactions, passing W-Bosons back & forth, and Flavour Oscillating ([math]d (W^{-} W^{+}) \bar{d} \to u (W^{+} W^{-}) \bar{u} \to s (W^{-} W^{+}) \bar{s} \to u (W^{+} W^{-}) \bar{u}[/math])... ???

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.