Jump to content

proof using contradiction

Featured Replies

Prove using contradiction the following:

 

[p<=>(q <=>r)] =>[(p<=>q)=> r]

Use the following rules:

 

[math]a\Leftrightarrow b\ \equiv\ (a\wedge b)\vee(\neg a\wedge \neg b)[/math]

 

[math]\neg(a\Leftrightarrow b)\ \equiv\ (a\wedge \neg b)\vee(\neg a\wedge b)[/math]

 

Thus: [math]\neg[(p\Leftrightarrow q)\Rightarrow r][/math]

 

[math]\implies\ (p\Leftrightarrow q)\wedge\neg r[/math]

 

[math]\implies\ [(p\wedge q)\vee(\neg p\wedge\neg q)]\wedge\neg r[/math]

 

[math]\implies\ [(p\wedge q)\wedge\neg r]\vee[(\neg p\wedge\neg q)\wedge\neg r][/math]

 

[math]\implies\ [p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)][/math]

 

[math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}\vee\{[p\wedge(\neg q\wedge r)]\vee[\neg p\wedge(q\wedge r)]\}[/math]

 

[math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[p\wedge(\neg q\wedge r)]\}\vee\{[\neg p\wedge(q\wedge r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}[/math]

 

[math]\implies\ \{p\wedge[(q\wedge\neg r)\vee(\neg q\wedge r)]\}\wedge\{\neg p\wedge[(q\wedge r)\vee(\neg q\wedge\neg r)]\}[/math]

 

[math]\implies\ [p\wedge\neg(q\Leftrightarrow r)]\wedge[\neg p\wedge(q\Leftrightarrow r)][/math]

 

[math]\implies\ \neg[p\Leftrightarrow(q\Leftrightarrow r)][/math]

  • Author
Use the following rules:

 

[math]a\Leftrightarrow b\ \equiv\ (a\wedge b)\vee(\neg a\wedge \neg b)[/math]

 

[math]\neg(a\Leftrightarrow b)\ \equiv\ (a\wedge \neg b)\vee(\neg a\wedge b)[/math]

 

Thus: [math]\neg[(p\Leftrightarrow q)\Rightarrow r][/math]

 

[math]\implies\ (p\Leftrightarrow q)\wedge\neg r[/math]

 

[math]\implies\ [(p\wedge q)\vee(\neg p\wedge\neg q)]\wedge\neg r[/math]

 

[math]\implies\ [(p\wedge q)\wedge\neg r]\vee[(\neg p\wedge\neg q)\wedge\neg r][/math]

 

[math]\implies\ [p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)][/math]

 

[math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}\vee\{[p\wedge(\neg q\wedge r)]\vee[\neg p\wedge(q\wedge r)]\}[/math]

 

[math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[p\wedge(\neg q\wedge r)]\}\vee\{[\neg p\wedge(q\wedge r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}[/math]

 

[math]\implies\ \{p\wedge[(q\wedge\neg r)\vee(\neg q\wedge r)]\}\wedge\{\neg p\wedge[(q\wedge r)\vee(\neg q\wedge\neg r)]\}[/math]

 

[math]\implies\ [p\wedge\neg(q\Leftrightarrow r)]\wedge[\neg p\wedge(q\Leftrightarrow r)][/math]

 

[math]\implies\ \neg[p\Leftrightarrow(q\Leftrightarrow r)][/math]

 

Where is the contradiction

You are assuming [math][p\Leftrightarrow(q\Leftrightarrow r)]\Rightarrow[(p\Leftrightarrow q)\Rightarrow r][/math] to be false. This is equivalent to [math][p\Leftrightarrow(q\Leftrightarrow r)]\wedge\neg[(p\Leftrightarrow q)\Rightarrow r].[/math] What I did was to show that [math]\neg[(p\Leftrightarrow q)\Rightarrow r][/math] would lead to [math]\neg[p\Leftrightarrow(q\Leftrightarrow r)][/math] which would make a contradiction with [math]p\Leftrightarrow(q\Leftrightarrow r).[/math]

  • Author
Use the following rules:

 

[math]a\Leftrightarrow b\ \equiv\ (a\wedge b)\vee(\neg a\wedge \neg b)[/math]

 

[math]\neg(a\Leftrightarrow b)\ \equiv\ (a\wedge \neg b)\vee(\neg a\wedge b)[/math]

 

Thus: [math]\neg[(p\Leftrightarrow q)\Rightarrow r][/math]

 

[math]\implies\ (p\Leftrightarrow q)\wedge\neg r[/math]

 

[math]\implies\ [(p\wedge q)\vee(\neg p\wedge\neg q)]\wedge\neg r[/math]

 

[math]\implies\ [(p\wedge q)\wedge\neg r]\vee[(\neg p\wedge\neg q)\wedge\neg r][/math]

 

[math]\implies\ [p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)][/math]

 

[math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}\vee\{[p\wedge(\neg q\wedge r)]\vee[\neg p\wedge(q\wedge r)]\}[/math]

 

[math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[p\wedge(\neg q\wedge r)]\}\vee\{[\neg p\wedge(q\wedge r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}[/math]

 

[math]\implies\ \{p\wedge[(q\wedge\neg r)\vee(\neg q\wedge r)]\}\wedge\{\neg p\wedge[(q\wedge r)\vee(\neg q\wedge\neg r)]\}[/math]

 

[math]\implies\ [p\wedge\neg(q\Leftrightarrow r)]\wedge[\neg p\wedge(q\Leftrightarrow r)][/math]

 

[math]\implies\ \neg[p\Leftrightarrow(q\Leftrightarrow r)][/math]

 

So now let us examine your proof:

 

According to your rule (which you must show how you get):

 

[math]\neg(a\Leftrightarrow b)\ \equiv\ (a\wedge \neg b)\vee(\neg a\wedge b)[/math]

 

To get :[math] \neg[p\Leftrightarrow(q\Leftrightarrow r)][/math]

 

You must have :[math] [p\wedge\neg(q\Leftrightarrow r)]\vee[\neg p\wedge(q\Leftrightarrow r)][/math]

 

Instead of [math] [p\wedge\neg(q\Leftrightarrow r)]\wedge[\neg p\wedge(q\Leftrightarrow r)][/math]

 

That you have in your proof

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.