Jump to content

disputed proof

Featured Replies

I presented a professor with the following proof:

 

Prove that the empty set is closed.

 

Proof :

 

By definition : [math]\emptyset[/math] is closed <=> cl[math]\emptyset\subseteq\emptyset[/math] <=> ([math]x\in[/math] cl [math]\emptyset[/math]=>[math]x\in\emptyset[/math])

 

cl [math]\emptyset[/math] is the closure of the empty set,and

B(x,r) is a ball of radius r round x

 

 

But ,by definition again [math]x\in[/math]cl [math]\emptyset[/math] <=> for all r>0 ,B(x,r)[math]\cap\emptyset\neq\emptyset[/math]....................................................................1

 

But , B(x,r)[math]\cap\emptyset =\emptyset[/math] => (B(x,r)[math]\cap\emptyset =\emptyset[/math] or [math]x\in\emptyset[/math]) <=>

 

(B(x,r)[math]\cap\emptyset\neq\emptyset[/math] =>[math]x\in\emptyset[/math])

 

And using (1) we get : [math]x\in\emptyset[/math]

 

Thus ,we have proved:

 

([math]x\in[/math] cl [math]\emptyset[/math]=>[math]x\in\emptyset[/math])

 

And the empty set is closed.

 

The professor did not accept the proof as correct .

 

Do you agree with him??

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.