Jump to content

Speed down the path on a half of a sphere

Featured Replies

What is the speed at any point of a path [math] \theta = \theta(\phi)[/math] on a rough sphere. The forces that affect the moving of a point particle are the force of gravity and the force of friction.

 

I tried this way but I am not sure if the normal vector is right:

 

[math]

\mathbf{T}=\frac{dx}{ds}\mathbf{i}+\frac{dy}{ds}\mathbf{j}+\frac{dz}{ds}\mathbf{k}

[/math]

 

[math]

\mathbf{N}=(-\frac{dz}{ds}-\frac{dy}{ds})\mathbf{i}+(-\frac{dz}{ds}+\frac{dx}{ds})\mathbf{j}+(\frac{dx}{ ds}+\frac{dy}{ds})\mathbf{k}

[/math]

 

[math]

F_g = -mg \mathbf{k}

[/math]

 

[math]

F_n=|\textbf{F}_g\cdot\textbf{N}|=|-mg (\frac{dx}{ds} +\frac{dy}{ds}) \textbf{k}|=mg (\frac{dx}{ds} +\frac{dy}{ds})

[/math]

 

[math]

\textbf{F}_{friction}=-\mu F_n\textbf{T}=-\mu mg (\frac{dx}{ds} +\frac{dy}{ds}) \textbf{T}

[/math]

 

[math]

ma=F_g -F_{riction}

[/math]

 

[math]

\frac{1}{2}\frac{d(v^2)}{ds}=g \frac{dz}{ds}-\mu g (\frac{dx}{ds} +\frac{dy}{ds})

[/math]

 

After integrating and converting to spherical coordinates i get:

 

[math]

v=\sqrt{2g((\cos{\theta_0}-\cos \theta)-\mu((\cos \phi_0 \sin \theta_0 - \cos \phi \ \sin \theta)+(\sin \phi_0 \sin \theta_0 - \sin \phi \sin \theta)) )}

[/math]

 

What do you think about the formulas about. Have I done it wrong? I think it would be better to go in spherical coordinates but I didn't know how.


Merged post follows:

Consecutive posts merged

I found how to solve it.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.