Jump to content

Stretching and Compressing Graphs

Featured Replies

I seem to be having an inordinate amount of difficult with understanding the concept of horizontal stretching and compressing graphs. Vertical stretching and compressing makes sense.

[math]y=2f(x^2)[/math]

If I understand it, this is simply multiplying the output of the function by two. All that happens is that the [math]y[/math] value is double whatever it would be as a result of [math]y=f(x^2)[/math]. This means that an input of 1 gives a [math]y[/math] value of 2, an input of 2 gives 8. This would stretch the graph away from the x-axis due to the y value increasing faster than it otherwise would.

 

The part that confuses me is when you multiply the [math]x[/math] value while it's inside of the function. I was unable to figure out how to graph Horizontal stretching on a calculator so I just manipulated the functions to show the graph that I wanted for this post.

 

Below is the graph of [math]y=f(x^2)[/math].

screen01kl1.jpg

 

This is simple enough, what confuses me is what happens when I give [math]x[/math] a coefficient greater than 1.

 

[math]y=f(2x^2)[/math]

screen02jm9.jpg

 

Now I realize that to graph this, all that I have to do is multiply the [math]x[/math] coordinate by [math]1/2[/math] and keep the [math]y[/math] coordinate the same. [math](1,1)[/math] becomes [math](.5,1)[/math] and [math](2,4)[/math] becomes [math](1,4)[/math] etc. The problem is, I don't understand why this happens? Why am I not doubling the [math]x^2[/math] like I intuitively would?

 

EDIT: I think I may have discovered what part of my problem is, [math]y=f(x^2)[/math] does not result in the graph that I have posted above as the function referenced by [math]f(x^2)[/math] is not given. I think what the book is asking is, what value of [math]x[/math], when multiplied by 2, gives the same output as the function would have if not multiplied by two. Is this correct? If so, it would explain what is happening as a function [math]f(x) = x^2[/math] (the actual function for the first graph) would indeed result in the value of [math]x[/math] needing to be .5 as [math]y=f(2x)[/math] when [math]f(2x)[/math] would be referring to [math]f(x) = x^2[/math]. .5 would be multiplied by 2 and then passed to the function which would square it to give the value of 1. Making the coordinates [math](.5,1)[/math].

Edited by Scientia
Fixin stuffs.

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.