Jump to content

Two methods of integration for Divergence Thm

Featured Replies

Hey again,

 

Okay, I have a hw problem that asks for a solution to an integral using 2 methods. I've solved them both but got two slightly different answers, and I can't figure out where I went wrong.... help!

 

Estimate the integral

[math]I=\int e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)d^3r [/math]

(over a sphere with radius R, centered on the origin)

 

by two different methods:

(a) carrying out the divergence operation

(b) integrating by parts.

So here are my solutions, please help me out, it's all VERY new and I had to go through the book about 3 times before I could understand what it is they're doing. I thought I did well, but.. well, apparently I didn't, since the answers don't match.

 

(a)

[math]I=\int e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)d^3r = \int e^{-ar} 4\pi\delta^3® d^3r

[/math]

Since we integrate over all space, r is in the domain of the integration, the delta function is equal to 1, and we solve for f(a) which is f(0), because the function is delta (r-0).

 

So:

 

[math]I=\int e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)d^3r = e^{-a*0}*4\pi = 4\pi[/math]

 

 

(b)

 

[math]I=\int e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)d^3r [/math]

 

We know that:

 

[math]

\int f(\bigtriangledown \cdot A) d\tau = -\int_{V} A \cdot (\bigtriangledown f) d\tau + \oint_{S} fA \cdot da

[/math]

 

Where

 

[math]

f(\bigtriangledown \cdot A) = e^{-ar} \left(\bigtriangledown \cdot \frac{\hat{r}}{r^2} \right)

[/math]

 

So:

 

[math]

\int e^{-ar} \left( \bigtriangledown \cdot \frac{\hat{r}}{r^2} \right) d^3r =[/math]

 

[math] - \int_{V} \left( \frac{\hat{r}}{r^2} \cdot \left( \bigtriangledown e^{-ar} \right) \right) d \tau + \oint_{S} \left( \frac{e^{-ar}}{r^2}\hat{r} \right) \cdot da =

[/math]

 

[math]

- \int_{V} \left( \frac{1}{r^2}\hat{r} \right) \cdot \left( e^{-ar}\hat{r} \right) d\tau + \oint_{S} \left( \frac{e^{-ar}}{r^2} \right) \cdot da=

[/math]

 

[math]

- \int_{V} \left( \frac{e^{-ar}}{r^2} \right) r^2 \sin{\theta} dr d\theta d\phi + \oint_{S} \left( \frac{e^{-ar}}{r^2} \right) r^2 \sin{\theta} dr d\theta d\phi =

[/math]

 

[math]

\int^{R}_{0} e^{-ar}dr \int^{\pi}_{0} \sin{\theta} d\theta \int^{2\pi}_{0} d\phi + \oint_{R} e^{-ar} \int^{pi}_{0} \sin{\theta} d\theta\int^{2\pi}_{0} \phi d\phi =

[/math]

 

[math]

\left( \frac{e^{-ar}}{-a} \right) |^{R}_{0} (-\cos{\theta})|^{\pi}_{0}\phi |^{2\pi}_{0} + \left( \frac{e^{-aR}}{-a} \right) (- \cos{\theta}) |^{\pi}_{0}\phi |^{2\pi}_{0}=

[/math]

 

[math]

\left( \dfrac{1-e^{-aR}}{-a} \right) 2*2\pi + \left( \dfrac{e^{-aR}}{-a} \right)2*2\pi

[/math]

 

[math]

= - \dfrac{4\pi}{a}

[/math]

 

Meh!!!

 

Help? What did I do wrong? Is my method even right????

 

help help I'm so confused... :(

 

~moo

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.