Jump to content

Fai current's (average) electromagnetic_force, & (average) heat_force Fah

Featured Replies

If I were
 to convert Electricity
 into average_momentum
 e.g. & average_forces,
 then this is how I would (mathematically) proportion (it, algebraically).

To deflect its needle,
 a D’Arsenval meter’s
 average (e.g. steady state)
 electromagnetic_force

 Fai=I*(R^0.5)*Ki, I=V/R & 1/R=1/(R^0.5)*(R^0.5)

 is proportional
 to
the current I
 & rooted_resistance R^0.5

 & the proportionality constant
 Ki=Fai/(Pe^0.5)=1*[N/(A*(Ω^0.5)]
 which is 1*[Newton/(Ampere*rooted_ohm)]
 (&) that (can be determined
 by) the average electromagnetic_force Fai
 divided by the rooted electrical_power
 Pe^0.5=Piv^0.5=(I*V)^0.5

That current’s electromagnetic force
 Fai=Fav

 is the same
 as the voltage's V=I*R (conversion
 from current I
 using the proportionality_constant R=Resistance,
 has the same)
 average electromagnetic_force

 Fav=V*Ki/(R^0.5), Kv=1/Ki=1*[V*(Ω^0.5)/N]

 Fav=V/((R^0.5)*Kv).

Either (voltage or current)
 average
 electromagnetic_forces (Fai=Fav, are equal)

 Fai=(Pe^0.5)*Ki

 Fav=(Pe^0.5)*Ki

 & is proportional
 to
the rooted electrical_power Pe^0.5=(I*V)^0.5

 & (multiplied
 by) the proportionality constant
 Ki=Fai/(Pe^0.5)=1*[N/(A*(Ω^0.5)].

 

Electricity’s
 average
 (random=)heating force
 Fah=(Pe^0.5)*Ki

 is also proportional
 to
the rooted electrical_power Pe^0.5=(I*V)^0.5

 & the proportionality constant
 Ki=Fai/(Pe^0.5)=1*[N/(A*(Ω^0.5)],
 as (a random (scattering of the (repeated))) recoil, (Newton’s 3rd law opposite & equal) force (equivalent).

Together
 both the electromagnetic_force Fai

 & the random heating_force Fah
 amounts
 are equivalent to an (arbitrary) average_force Fa=Fai=Fah

 & (are “multiplied” together
 to) make up the total electrical_power

 Pe=Fai*Fah/(Ki^2), where the inverse squared proportionality_constant is

(Ki^2)=1*[(N^2/((A^2)*Ω)].

So,
 the electrical_power
 Pe=(Fa/Ki)^2
 is a squared average Force Fa^2
 per squared proportionality_constant Ki^2.

What does all that mean?

That means
 the average_force
 Fa=moma/t
 is equivalent
 to an mechanical average_force.

---

(Please note:
 James Watt’s mechanical Power P=Pm definition
 Pa=Fa*va
 is an (algebraic) “average”_Power Pa
 using an “average” (steady_state) Force Fa=m*va/t
 of mass m
 multiplied by average linear_acceleration aa=va/t (my aa2 2nd order of motion);
 & an average_speed va=d/t
 of distance d
 per time t. 

My “electrical” average_Power formula Pe=Fai*Fah/(Ki^2)
 Pe#Pm

 looks very different
 from James Watt’s “mechanical” average_Power Pm=Pa=Fa*va.

James’ (average) mechanical_Power
 is an (average_)Force Fa
 multiplied by a(n average)_speed Va;
 while my (average) electrical_Power
 is basically a “squared(average_)Force Fa
 but divided by a squared constant.

E.g. A(n average_)speed
 is (definitely) NOT a(n average_)force!

Disclaimer:

1.
But that is the ONLY way
 I know how to do it (=the conversion formulas), yet.

2. ..(because)..
That is what the math
 & its (observed) proportions tells me.
)

---

& that (average_Force Fa)
 is the rate
 of the average_momentum
 moma=m*va
 per time t;

 where the average_speed va=d/t
 is the distance d
 per time t,
 for a mass m. 

& that (average_Force)
 Fa=Fai
 is equal
 to the current’s
 average electromagnetic_force Fai.

& if you know the average force
 Fa=Fah
 then you also (already) know the average (random=)heating_force Fah
 & the average electromagnetic_force Fai=Fav
 for either the current (thru a Resistor, Resistance)
 Fa=Fai
 or for voltage (thru a Resistor, Resistance)
 Fa=Fav
 or both (I*V) when rooted.

Note:

The units
 for the proportionality constant
 Ki=ki*[N*s/C]
 work out to be
 a(n average_)momentum [N*s]
 per Coulomb [C]
,
 e.g.
 [N*s/C]=[kg*m/(s*C)]=[(kg/C)*(m/s)]
 where a mass to charge ratio [kg/C]
 is obvious(ly),
 multiplied with an average_speed [m/s].


E.g.1
Let be given
 the voltage V=1*[V]
 the current I=1*[A]
 the Resistance R=1*[Ω]

 the rooted_Resistance R^0.5=1*[Ω^0.5]
 the electrical_power Pe=I*V=1*[A]*1*[V]=1*[A*V]=1 [electrical_Watt]
 the rooted electrical_power Pe^0.5=Piv^0.5=(I*V)^0.5=(1*[A]*1*[V])^0.5=1*[A*V]^0.5 .

The average electromagnetic_force is
 Fai=I*(R^0.5)*Ki=1*[A]*((1*[Ω])^0.5)*1*[N/(A*(Ω^0.5)]=1*[N].

The average heating_force is (also)
 Fah=I*(R^0.5)*Ki=1*[A]*((1*[Ω])^0.5)*1*[N/(A*(Ω^0.5)]=1*[N].

That (easy example) doesN’T tell much,
 so let’s try something else.


E.g.2
Let be given
 the voltage V=100*[V]
 the current I=5*[A]
 the Resistance R=V/I=100*[V]/(5*[A])=20*[Ω]

 the rooted_Resistance R^0.5=(V/I)^0.5=(100*[V]/(5*[A]))^0,5=(20*[Ω])^0.5=~4.7*[Ω^0.5]
 the electrical_power Pe=I*V=5*[A]*100*[V]=500*[A*V]=500 [electrical_Watt]
 the rooted electrical_power Pe^0.5=Piv^05=(I*V)^0.5=(5*[A]*100*[V])^0.5=(500*[A*V])^0.5=22.4*([A*V]^0.5).

The average electromagnetic_force is
 Fai=I*(R^0.5)*Ki=5*[A]*((4.7*[Ω])^0.5)*1*[N/(A*(Ω^0.5)]=22.4*[N].

The average heating_force is (also)
 Fah=I*(R^0.5)*Ki=5*[A]*((4.7*[Ω])^0.5)*1*[N/(A*(Ω^0.5)]=22.4*[N].

Or else simply let

 Fa=Fai=Fah
 Fa=(Pe^0.5)*Ki, Pe^0.5=Piv^0.5=(I*V)^0.5

 Fa=((I*V)^0.5)*Ki.

Such (average_momentum electrical heating) will deliver
 moma=Fah*t, let time t= 1*[second]
 moma=22.4*[N]*1*[s]

 moma=22.4*[N*s]
 in 1 second (of time).

 

In other words,
 the 500*[W] electrical (power’s)
 average heating_force
 Fah=22.4*[N]

 will deliver 22.4*[N*s]
 of average_momentum (heat)
 per second.

1000*[W] electrical
 will deliver 31.6*[N*s]

 per second;

 &
 10*[kW] electrical

 will deliver 100*[N*s]
 per second.

Edited by Capiert

Please sign in to comment

You will be able to leave a comment after signing in

Sign In Now

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.