Jump to content

Bounds for Primes using Euclid

Featured Replies

Hi all! I'm supposed to use Euclid's proof that there are infinitely many primes to show that the nth prime p_n does not exceed 2^(2^(n-1)) whenever n is a positive integer. Conclude that when n is a positive integer, there are at least n+1 primes less than 2^(2^n).

 

Any help will be greatly appreciated. Thanks!

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.