Jump to content

just checking...

Featured Replies

is this a 'proof' for this question?

 

[math]

h(x) = \sqrt(3 + x)

[/math]

 

we want to find a K > 0 such that

[math]

|h(x) - h(y)| \leq K|x-y| \ \ \forall x,y \in [0,1]

[/math]

 

that is we want a K > 0 such that

[math]

|\sqrt(3 + x) - \sqrt(3 + y))| \leq K|x-y| \forall x,y \in [0,1]

[/math]

 

now

[math]

|\sqrt(3 + x) - \sqrt(3 + y)| = \frac{|(\sqrt(3 + x) - \sqrt(3 + y))(\sqrt(3 + x) + \sqrt(3 + y)|}{|\sqrt(3 + x) + \sqrt(3 + y)|}

[/math]

[math]

=\frac{|(3 + x) - (3+y)|}{|\sqrt(3 + x) + \sqrt(3 + y)|}=\frac{|x-y|}{|\sqrt(3 + x) + \sqrt(3 + y)|}

[/math]

 

So, we want:

[math]

\frac{|x-y|}{|\sqrt(3 + x) + \sqrt(3 + y)|} \leq K|x-y|

[/math]

 

The max. value that [math]\frac{|x-y|}{|\sqrt(3 + x) + \sqrt(3 + y)|}[/math] attains is when

[math]

x=y=0

[/math]

 

So when x=y=0

[math]

\frac{|x-y|}{|\sqrt(3 + x) + \sqrt(3 + y)|} = \frac{1}{\sqrt(3)+\sqrt(3)}

= \frac{1}{2\sqrt(3)}[/math]

 

So Let K = [math] \frac{1}{2 \sqrt(3)} [/math]

 

[math]

\therefore \ if \ \ K = \frac{1}{2\sqrt(3)}

[/math]

[math]

then |\sqrt(3 + x) - \sqrt(3 + y))| \leq K|x-y| \ \ \forall x,y \in [0,1]

[/math]

Picture 10.png

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.