Jump to content

Grey-box system ID for a set of DAEs

Featured Replies

I have a system of 1st order odes given by 

$$
\dot{x_1}(t) = \alpha_1 f_1(x_1,t) + \beta_1 u(t) \\
\dot{x_2}(t) = \alpha_2 f_2(x_2,t) + \beta_2 u(t)
$$

They are constrained by an algebraic equation

$$ x_1(t) + x_2(t) =  k $$

where $\left( \alpha_1,\alpha_2, \beta_1,\beta_2 , k \right) \in \mathbb{R}$  are known constants (i.e. parameters). $f_1(t)$ and $f_2(t)$ are both unknown.

Starting from a rich set of input-output **noise-free** data available from simulating a complex proxy system, what would be the best procedure to identify (even a subset of repeatable/characteristic properties) the unknown **_possibly time-varying_** functions $f_1(x_1,t)$ and $f_2(x_2,t)?$ I am almost certain that $f_1(x_1,t)$ and $f_2(x_2,t)$ are both linear.

I am looking for a grey-box system-id approach that shall work well to arbitrary excitations in all future simulations. (NOT merely a curve-fitting procedure to match a specific excitation input-output dataset)

Archived

This topic is now archived and is closed to further replies.

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.

Configure browser push notifications

Chrome (Android)
  1. Tap the lock icon next to the address bar.
  2. Tap Permissions → Notifications.
  3. Adjust your preference.
Chrome (Desktop)
  1. Click the padlock icon in the address bar.
  2. Select Site settings.
  3. Find Notifications and adjust your preference.