Jump to content
Sign in to follow this  
Pawel Wembley

max and min of a sum

Recommended Posts

I would appreciate very much your help or direction to solve the problem.

Looks like equation


has got min and max values

with the assumptions




and i is a natural number from 1 to K


Looks like the Qmax and Qmin depend on B and K only. I failed to find general solution for Qmax and Qmin.


I attach the pdf with the problem written in Word Equation instead of Excel manner


Edited by Pawel Wembley

Share this post

Link to post
Share on other sites

Hello Pawel.


The mimimum [math]Q_{min}=\max(KB-1,0)[/math] is calculated as follows:


[math]\sum_{i=1}^{K}|B-A{_i}|\geq 0[/math] is trivial, and reached if all [math]A{_i}[/math] are equal to [math]B[/math].

If [math]KB-1>0[/math] then the minimum is not reached at 0, but at [math]\sum_{i=1}^{K}|B-A{_i}|\stackrel{|x|\geq x}{\geq}\sum_{i=1}^{K}(B-A{_i})\[/math] [math]=KB-\sum_{i=1}^{K}A{_i}\ \stackrel{\sum_{i=1}^{K}A{_i}=1}{=}KB-1[/math]. This minimum value is reached if and only if [math]A{_i}<B \forall i[/math].

In the case [math]KB-1<0[/math], you have [math]B<\frac{1}{K}[/math], so at least one of the [math]A{_i}[/math] is larger than [math]B[/math] (by the Pigeon Principle). Which means that [math]KB-1[/math] can't be reached. In that case, the mimimum is 0.



For the maximum [math]Q_{max}=1+B(K-2)[/math]:


[math]\sum_{i=1}^{K}|B-A{_i}| \stackrel{extend}{=}\sum_{i=1}^{K}(B+A{_i})-\sum_{i=1}^{K}(B+A_{i}-|B-A{_i}|)[/math] [math]=KB+1-\sum_{i=1,A{_i}>B}^{K}(B+A{_i}+B-A{_i})-\sum_{i=1,A{_i}\leq B}^{K}(B+A{_i}-B+A{_i})[/math] [math]=KB+1-\sum_{i=1,A{_i}>B}^{K}(2B)-\sum_{i=1,A{_i}\leq B}^{K}(2A{_i})[/math]. This will get maximal if you have [math]A{_i}=0 \forall A{_i}\leq B[/math], when it will be equal to [math]KB+1-2B \cdot 1_{A{_i}>B}[/math].

If one of the [math]A{_i}[/math] is equal to [math]1[/math] (and all other [math]A_{i}[/math] are [math]0[/math]), this will take its maximum value [math]KB+1-2B \cdot 1=1+B(K-2)[/math].

Edited by renerpho

Share this post

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.