Everything posted by tmdarkmatter
-
What effect does time dilation have on light?
I am sorry, this confusion has to do with little differences between languages on how to denominate certain scientific effects, situations or theories.
-
What effect does time dilation have on light?
Well, when Einstein came up with his ideas, all physicists were also saying that they are already aware of everything and that there are no more things to discover. What if time dilatation and light bending in total are not as negligible as initially thought? Don´t forget that when we are looking at the sky, we are only seeing light! We do not see stars or galaxies, just light. We cannot travel around stars, we cannot touch them. The more the light is bended and the stronger time dilatation is (and the further away galaxies are), the less does the image we see correspond to reality. Maybe stars and galaxies are just playing a game with us and nothing we see is actually there. But there is no way to prove that, unless we travel for a couple of millions of years to at least some neighbor stars. Well, actually, the light is not "converging on us". That´s why we see an Einstein ring. And after passing by the lens, we just have to be lucky enough to have a source galaxy that is at the correct distance (similar to our distance from this galaxy) to see the Einstein ring. But if there was no galaxy behind, the lens effect would exist anyway. Each heavy object is a lens, there are billions of lens surrounding us, each one with a certain angle/strength of bending. And many lens together seem to act as one big lens as well. There are even billions of lens made only of dark matter. But not seeing them does not mean that they are not there. Light might be bending everywhere and stars and galaxies might not be where we would suppose to find them. The same happens with time. And the light is only being bended at the exact moment when it passes by the lens. The distance between lens and source or lens and observer does not affect the angle or strength of the lens. All the effect should be produced in a couple of thousands of light years (or even less).
-
What effect does time dilation have on light?
I am sorry, but even in the "highly simplified" image of Wikipedia it does not seem that the light passes close to the black hole of the "lens galaxy": https://en.wikipedia.org/wiki/Einstein_ring The only distances that matter are the distances between source, lense, and observer. It seem highly improbable that it is the light passing closest to the black hole that we see in the Einstein ring. If you watch the Andromeda galaxie, you can see that the center of the galaxy seems not to be transparent from a distance. Rather this light seems to be passing by the galaxy. If you analyze the sun, it is made of trillions of atoms. The same happens with galaxies, they are made of billions of stars, but work together to create the effect.
-
What effect does time dilation have on light?
I mean the opposite. If we should not be worried about this effect, why are there Einstein rings surrounding galaxies? Please don´t think that I am argueing. It is only a question. I am just curious.
-
What effect does time dilation have on light?
Yes, but what I can see is that this effect is always being considered as negligible, but if we are close to a black hole, the entire universe surrounding us would change completely. And maybe the same happens, if we are in the intergalactical space. But the strange thing is that physics currently ignore this effect here, because being for example 25 million light years away from our galaxy according to these equations would be almost the same situation than on earth. It is strange, but we are currently within a galaxy with a mass of 1,5 10^12 x 2,00 10^27 = 3 10^39 tons and we consider that being 25 million light years away from this mass would not have any effect at all?
-
What effect does time dilation have on light?
Wow, we are still very far away from accurately measuring the universe. I did not know that the measured distances would be that inaccurate! Thank you very much for your answer. Yes, maybe I would like to know what would be the situation near a black hole AND in the intergalactic space (in comparison). If close to a black hole, I am wondering that the light surrounding us would be travelling faster than what we would consider "speed of light" at this place. Maybe, because of our proximity to the sun, there should be a very slight effect on our passage of time, so that most of the light surrounding us would be travelling "faster than the speed of light", unless it is at a similar distance or closer to a star of the mass of our sun. But most light should be travelling faster. The average speed of light of the universe might for example be 305,000 km per second or even more at the average distance from stars, if we take this real distance and compare it with the space surrounding Earth. And close to a black hole, this speed might be only 150.000 km per second or even less. Maybe this situation is the cause of why light is getting trapped in a black hole in the first place.
-
What effect does time dilation have on light?
The question is, if time passes by slower close to heavy masses, what effect does that have on light passing by a heavy object (black hole). According to Einstein, all processes take place slower and, although light keeps travelling at the speed of light, we (from our point of view) should see that this light should pass by slower. In the intergalactic space, however, the total opposite should happen. As time goes by faster and the light there also passes by at the speed of light, from our point of view we should see this light travelling faster than the speed of light as we know it. If this is real, the galaxies we see, should actually be slightly farther away from us, because the light was travelling faster than we think, a light year would be a bigger distance in the intergalactic space. And if we watch the center of our milky way, it should be somewhat closer to us, because the light was travelling slower. A light year would be a smaller distance. Please tell me what you think.
-
Dark matter found?
Hi, thank you for even considering that it might even be possible to support what I am proposing. Maybe, I would need still a couple of years to further elaborate my ideas. So far, they are only speculations. But I wanted to show the world at least my speculations. Hi Ghideon, thank you for your interest. The answers are as follows: How does a solar system "contain" light? As light moves at the speed of light and we consider that the solar system has a radius of about 2-3 light years according to the distance of neighbor stars, we can say that the solar systems contains about 2-3 light years (average maybe 3 light years) of light coming from all light emitting objects surrounding us (not only the sun). Where is this light? The problem is that you can only see light one moment at once, so you actually only "see" the photons directly arriving at your eyes, but you cannot see the three years of light passing through our solar system. But even if you watch the sky for three years, you would only see the light coming directly towards the point where you are standing, and this would still be a highly negligible part of all the light travelling through our solar system. (Just imagine how much light would arrive at the earth comparing it to the amount of light passing by). How does the solar system "collect"/"store"/"hide" lots of light from distant stars? If we can see the stars that means that their light has already travelled through our solar system and that there is much more light on its way or much more light that has already passed by, unless the stars suddenly disappear. Why is not the light from sun also "contained" in massive amounts? The light of the sun is also contained in our solar system, but it is only a very tiny part of the total light contained in the solar system. If you stand at an average distance to our sun within the sphere of our solar system (lets say 2 light years), the sun would only be a tiny dot surrounded by billions of other tiny dots. Why is the night sky black instead of full of these "contained" photons? First of all, the atmosphere is hindering us from seeing most objects at the sky. Second, as I previously said, you can only see the light one moment at once. What novel physical mechanisms do you propose? I propose that we might be considering the mass of light negligible, when it can actually be the best candidate to explain the effect of "dark matter", because it is everywhere, it is transparent, it does not accumulate to form complex structures, it does not interact considerably with the surrounding mass (otherwise we would not see the light coming from distant galaxies) and it has a very low mass that is very difficult to measure (exactly what we are looking for). If the density of dark matter was for example similiar to air, the universe would be billions of times too heavy and would crush us. It is interesting to think that in order to "see" all the light arriving at our solar systems, we would have to fill our entire solar system with an almost infinite amount of all-surround sensors. If we install one sensor per meter, we would need millions of times more sensors than the cells contained in the entire biomass of our planet.
-
Dark matter found?
I think that we are again measuring what is happening around some blood cells while ignoring the soccer field surrounding us. But please, this is only my opinion.
-
Dark matter found?
Yes, but what would happen, if it would be possible to have for example two planets each one two light years away from the sun in an almost perfectly opposing position and repeating this experiment, of course again sending the light as close as possible passing by the sun. Obviously, in this case, the planets (or the sun) might move during these 4 years rendering the experiment impossible, but if the objects would be hypothetical "static" objects, by how much would these 200 microseconds increase? To 250 microseconds? To 400 microseconds? Or to 5 hours? Venus and Earth are at most 14 light minutes away from each other, so how much would the effect be during 4 light years (of course summing a lot of "negligible values")? They should have used the Voyager spacecrafts to do this kind of experiments.
-
Dark matter found?
Yes, you are right. There are a lot of calculations to do. I am just checking how small the deviation actually is. At a distance of 100 km away from the sun, the angle is not even a 1/1000th degree. Anyway, I should use light at a "standard distance" to stars travelling through a "standard galaxy" to calculate a "standard angle" of deviation created by all stars in a row adding also the mass of the "light mass" contained within this galaxy. With this "standard angle" it should be possible to estimate the increase of mass created by this deviation effect within a galaxy. Anyway, the Shapiro delay is only the delay detected between Earth and Venus. The longer the distance, the higher would be this delay. Of course, again this effect gets lower and lower exponentially when we go away from the sun, so again I would end up adding "almost nothing" to "almost nothing"...
-
Dark matter found?
This Zen master would also say: "Stop searching for dark matter! It does not make sense to waste time on it. Just leave the gods alone, they just made a small mistake while designing the universe!" But maybe almost infinite times a very small number is a huge number. Well, let´s say that an alien from another planet told me that light mass is actually dark matter, but as he was not a scientist, he could not explain it to me. But this graph shows a little more, what I mean with gravitational deflection. https://en.wikipedia.org/wiki/File:Shapiro_delay.gif Now imagine the amount of extra light mass surrounding a black hole. And this effect should be observed around every object in space, from little rocks to entire galaxies. Some create almost no effect at all, others create a very small effect and the black hole is the object with most effect. Somebody should create this same graphic but with millions of stars and each one with a much lower effect, so we can see what happens if light is slightly deviated by millions of stars. If light has to cross the milky way from the sides, it would have to pass by 20.000 stars that are 0-5 light years away to reach the other side. How probable would it be that this light remains on track after passing by so many stars? Each time light is being deviated or reflected that means an increase in total light mass. But the worst thing is that the mass of the light mass itself can be responsible for deviating light mass! So we have an invisible elephant attracting smaller elephants that attract even smaller elephants and so on.
-
Dark matter found?
Yes, you are right. I am sorry, I was very tired yesterday. I have a lot of work to do this week and I am just too busy. I am sorry, but in most cases I can just tell you the ideas. It is often not possible to get concrete numbers yet, so there is not a real hypothesis yet, only speculations. The idea of light mass replacing dark matter is still only a supposition. The help of many scientists would be needed to confirm/reject anything. I know that I should now provide new calculations like I did at the beginning by calculating the aproximate light mass in a sphere of 25 million light years. I will do that when I have more time. For example, it would be interesting to calculate how much light (a percentage) should be reflected by a galaxy taking into account the "area" of the sky each object (billions of star systems) would occupy at a certain distance. Another calculation would be to calculate how much light would be deviated by a standard star und by how much it would be deviated (degrees). This effect should then be multiplied by all the stars. But at the same time, a galaxy as a whole should also deviate light. All these calculations should be highly complicated. No, I am sorry, this time I was not talking about redshift. Instead, I am talking about anomalies that would increase the light mass surrounding us. But what happens if in the next 1000 years we will only be able to chose between hand-waving and "dark matter"? Ok, lets flight to a black hole first and then we continue with this discussion. As you can see, I would need a lot of help. But at the same time you are right, before publishing my ideas, I should have kept calculating for years to provide at least some more data. But maybe you can help me. At the end, the only thing I am trying to do is to find new answers to the question "what is dark matter?" And before I die, I wanted to give you or somebody else my ideas and draw the attention to the situation "that somebody left the light on in a living room full of invisible elephants". If you have light from our sun travelling towards an asteroid field and the light comes back, you will have the same light travelling through the same space in between twice, so the same light would provide twice as much mass as it should when only travelling into one direction. The same would happen if a very heavy object is able to make light spin around it and releasing it into the same direction where the light originally came from (like the sun is doing with comets).
-
Dark matter found?
Yes, it is interesting to analyze this with nuclei. What I think in this regard is that we might think that we have already found all types of atoms and that we have already completed the periodic system. The question is, what type of atoms do we have close to the black hole? If the mass/gravity is extremely high and there is a lot of heat/pressure there and in the surrounding stars, isn´t it possible that there are many more elements we did not find yet or where not able to artifically create? Maybe the stars are able to perform much more reactions with much more complex atoms, so there are many more fusion steps we still do not know. So far, we know that most of the elements are produced in stars and that the more complex ones are produced at the end of the lifetime of a star. But also here we might be wrong. Maybe there are more complex reactions already taking place in the center of the stars. By the way, we also do not know exactly what is going on inside earth, so far, we only drilled some 12 km. There might be a black hole inside earth of the size of a tennis ball and we would not be aware of that. A supernova might not be a process to create a black hole, but a supernova might be an attempt of a dying star to get rid of its black hole! I think the beginning of the story is hydrogen atoms and the end of the story is the singularity. Also, nature has shown us that it is much more efficient than we are with our machines, so I think that nature will also complete this story very smoothly and slowly.
-
Dark matter found?
Hi, yes, all stars generate a lot of light. What I am saying is that if we look at the sky while standing on earth, obviously most light comes from the sun. But we are only 7 light minutes away from the sun. The "average distance" from our sun within our solar system (the actual border should be somewhere between the sun and the closest stars) should be about 2-3 light years away. So, if you sit in a spacecraft at that distance from the sun and look at the sky, the sun would only be a little dot surrounded by millions of other little dots you would also see and which would have a similar brightness than the sun. Therefore, I am supposing that most light contained within our own solar system does not come from the sun itself, but from all these other stars and galaxies. As a result, I wanted to highlight that light itself can be a candidate too. But, as you can see above, my ideas are still having a lot of issues and so far, unfortunately, we still have to consider that "nothing" is the best option for "dark matter", unless we discover that the light has actually other characteristics we do not know so far or if we really can change several of the so far quite well established theories. For example, light must definitely have a mass (there must be no doubt!) and there must definitely be enough light (80% of the total mass). I calculated that there might be enough mass in a sphere of 25 million light years around us, but this might still not be enough. Maybe in the future we make new discoveries that change it all. Unfortunately, we will have to do very difficult things like travelling outside of our solar system with a telescope, travelling close to a black hole, travelling to the border of our galaxy and maybe waiting some millions of years in order to confirm that galaxies are really moving away and at a certain speed etc. I prefer to be be modest instead of trying to impose ideas that can be totally wrong. Of course, other (even well established) theories can be wrong too, but I am not in a position to throw stones at others. Only nature decides if I am right or wrong (but there is only one right and there can be an almost infinite amount of wrongs!) and thousands of scientists are in charge of reading what nature (or if you prefer the creator) is telling us. Yes, but there are a lot of things to consider: - I don´t think that the sun will always emit the same amount of light. Instead, it will increase from time to time. - Maybe the universe and/or the sun is much older or will get much older than we currently think. Just try to imagine how our milky way was formed in only 70 spins! If earth needed 500 millions years (spins) only to cool down, it does not seem to be realistic that its shape was created in only 70 years (spins). And the structure of the milky way is far more complicated. (it is always funny to see the big bang and suddenly the galaxies appear in a perfect shape without any development) - Not all light in the universe is generated by stars (just have a look at the Andromeda galaxy and tell me where most light comes from). Even Jupiter emits more light than it absorbs. - What about all the light bumping against other objects (a clear example is our moon). If light is reflected, its mass counts twice! - What about all the light that is getting deviated like with the Einstein rings? Is it possible that there is much more light in space being slightly deviated and we just do not detect that? Imagine light travelling from one group of galaxies to another group of galaxies and coming back because it was deviated. This light counts twice Obviously, this would also suggest that there are several galaxies we might be watching twice! (there are actually galaxies where this was already confirmed) - What about the real mass of the (heavy) stars, black holes and galaxies? How much of their mass is really intrinsic mass and not holded back light mass? - What about the relativity of time? What effect would a different passage of time have on light? - What about the relativity of space? - Etc. etc. etc.
-
Dark matter found?
By the way, I really like the guidelines of this place, especially the section 1 sentence.
-
Dark matter found?
Hi again, I am sorry, but it was already late yesterday, so I could not tell you what I wanted to tell you. You are always talking about one lamp that is shining and losing all the light at once and straightforward. But please have a look at the Andromeda galaxy and tell me what you see. You might say, ok, there are billions of stars, each one has a certain size and a certain gravitation field. And that´s not all, each of them is surrounded by many more planets, moons, asteroids, comets, even small rocks and dust. Now I want to ask you, when you look at the center of our milky way, can you perfectly see it? No. Why are we so sure that we have asteroids around us? Because the light of our sun hits them and is being reglected, otherwise they would all be invisible. The same happens with planets and moons. All these different objects are not only able to reflect light, they also have their own gravity and can deviate light at least very little. All this might be negligible when observing each object isolated, but on a large scale like galaxies, this effect might actually be responsible for retaining some light for a little longer than expected. So, if you would be able to turn the light of our galaxy on and observe it at distance with several cameras at different angles, you might see that the first light might arrive "almost" straightforward at the speed of light, then there would maybe be a second wave of all the light that had to pass by just smaller objects, than the light that had to pass by or was reflected by at least 1 star and got deviated, then light that had to pass or was reflected by at least 2 stars and got deviated twice, then 3 stars, 4 stars, 5, 6, 7,....9999 stars (maybe light that comes from the center) and then there is light that never made it out of the galaxy because it was captured by the black hole. Now, you might say that this effect should be negligible and that this light would never be enough for the elephants needed. The problem is that all the light coming from all the galaxies surrounding us also has to enter our milky way, pass by all these stars, get lost somewhere in the labyrinth of all the objects contained in our milky way until it finally comes out on the other side, gets deviated as well, or gets lost in one of the black holes. If the light is so perfect and can get through galaxies so quickly (near perfectly), why can we neither see our milky way nor the Andromeda galaxy well as we should (in the Andromeda galaxy they say that the center should be much brighter)? This is a proof that there is something else going on and that the effect is not negligible. If it was negligible, we would see an almost perfect galaxy. And this is not the only anomaly, but let me prepare my messages with time, because otherwise I would not be using a smart, logical wording, but would rather offend you with text of bad quality or without logical reasoning. Yes, we should definitely check this situation. But if confirmed, it would definitely cancel the big bang idea. But as time goes by, our universe also changes. So, your elephants are not just elephants, they are made of billions of little dots surrounded by all types of dust and material and it seems as if the light that was left on invades these elephants and needs some extra time to come out again. But please, this is only the proposal of a solution.
-
Dark matter found?
Well, what I suppose with the lamp is the following: The lamp shines for billions of years, until it goes out or explodes. Then after a couple of millions of years, the remains of the first lamp combine with the remains of another destroyed lamp and create another (different) lamp that shines for another billions of years, until this second one goes out or explodes as well and combines with other remains until a 3rd, 4th, 5th......9999th lamp generates, creating more and more light. If we would be able see the universe from outside, it would start containing a lot of lamps at the beginning and almost no light and end with only one lamp (or rather a huge black hole) in the middle surrounded by a huge amount of light.
-
Dark matter found?
It is like the photons abandon one universe with more concentrated matter (baryonic + energy/light) and arrive at another universe with a less concentrated matter (baryonic + energy/light) Hi. It is just a method to explain that light has to deal with gravity on its way to us. We are discussing the Pound-Rebka experiment. I am sorry, if I do not have the right words.
-
Dark matter found?
Wait, I have a very crazy idea lol let me see if you like it: If we take a galaxy that is very far away (13 billion light years), it means that the light traveled during 13 billion years. Well, as we are supposing, during that time all these stars lose at least part of their mass as light/energy, so actually galaxies should become lighter and lighter. So when this light finally arrives at our earth, all galaxies (including ours) are a little lighter than at the beginning, so the light now gains less frequency when arriving at the mass of our galaxy. At the end the light is more red shifted and at the same time the energy of the photons is being conserved. Lol, that would be funny.
-
Dark matter found?
Yes, there must be something we are not taking into account yet. It is like the light is climbing out more and more the further the source is away. It is like the light is climbing in total, away from a mass that is available in all directions. Anyway, the Pound-Rebka experiment is just an experiment in a tower of 25 meters. We would need to repeat this experiment on a much larger scale. It does not matter if the shift is tiny, don´t forget how vast space and all these galaxies are. Any little shift sums up.
-
Dark matter found?
No, I did not mean 1 or 2 million light years away, I mean it is not the same if the same gravitational force is being exerted on light while it is travelling for one or two million years. It is both important, how strong the force is and for how long it is beeing exerted on the light. I think we are again dealing with the problem of the size of the universe. Maybe the gravitation is very low when light passes by a galaxy, but it also needs to travel for maybe 1 million years to finally pass by. And don´t forget that when light is travelling in our direction, it is also being holded back by the galaxy it is abandoning. You might say, that it would also be accelerated by the next galaxy and then again being retarded and so on for many times, but in total, I suppose that light should rather lose some of its frequency (redshift) while travelling and the further the source is, the more frequency it should lose. Also dont forget that it is pulled to the sides as well, not only falling into wells and climbing out.
-
Dark matter found?
Lol, ok, so the effect is really impossible to see to the unaided eye. Einstein was of course also checking this. Maybe earth has more mass and the effect would be a little more but still negligible. I wonder if there are images of the sun showing up from behind Jupiter or Saturn. They say that it was also very hard to confirm that the sun is deviating the light coming from the stars behind. They had to find a perfect solar eclipse and take some very difficult pictures. Earth is not round either lol
-
Dark matter found?
I am sorry, but I am seeing earth not very round here either at the beginning: Maybe it is just my perception But maybe we found the atmosphere as a big elephant and final solution and are ignoring the fact that earth and moon etc. should also manipulate light at least slightly. The question is what is "near a mass". If you check the Einstein rings found so far, it is light very far away from a galaxy that becomes manipulated. The effect of Einstein rings can be on a small scale like stars or on a big scale like galaxies. "No effect" should not be possible because gravity is infinite. I think "negligible" is the correct term.
-
Dark matter found?
Yes, this effect is currently being completely ignored. I think it is funny to think that the only places where mass is affecting the trajectory of light or manipulating light are Einstein rings. At all other places in the universe, light should not be affected by gravity? I think that is a big mistake we are currently making. Just look at our sun just minutes before sunset and you will see that the sun is no longer round (similar to the effect of an Einstein ring). That´s because we are not seeing the sun directly, but only its light and this light is being manipulated by earth´s mass. The same happens during a solar eclipse. The mass of the sun deviates the light of stars behind it and the mass of the moon deviates the light coming from the stellar corona. So if we reflect about this, it seems that all objects in space have their own Einstein rings. So all objects seem to be manipulating not only the trajectory of light, but also its frequency. With time of exposure I mean that if the light travels for longer periods, it is more probable that it passes by objects with mass, so the light coming from far away should be more manipulated then the light coming from closer objects. Also, it is not the same if for example a galaxy uses its attractive force on light for 1 million years than for 2. The longer the effect, the stronger the redshift. I think there are also two possible explanations of why we cannot "see" galaxies that are further away than 13,5 billion light years: - the redshift is so extense, that the light arriving at our telescope is no longer visible - the trajectory of the light coming from these galaxies is so deviated, that it starts to travel in enormous circles around the source galaxy instead of travelling straight forward. Maybe it is no longer possible for the light to stay on its trajectory and actually reach us due to the high amount of mass in between. I am sorry if I irritated you somehow. Of course I have at least gathered this basic information and I am not an expert in this topic. Of course the distribution of galaxies is very complex with really big (surprising) structures. I am just "proposing" the idea of gravity instead of speed of galaxies as cause for redshifts. We all have to further study the structure of the universe in order to better understand it, that´s what life is all about, to keep learning every day until the last. Also, if I say that gravity makes more sense than the speed of galaxies as cause of redshift, it is only my opinion. All theories and ideas will always have supporters and opposers, even the idea that earth is flat or that we never went to the moon still have some supporters. Obviously, my ideas might have almost no supporters and almost only opposers, but that´s ok to me. If I do not know something, I am asking you or somebody who knows to help me. That is what we should all do to improve our civilization, we need collaboration, not enemies. And nobody can know everything.