Jump to content

Trigonometric Identities


EvoN1020v

Recommended Posts

What a beautiful day! I just learnt about Additive & Subractive Angle Identities today. Let me recollect what I have learnt:

 

THIS IS THE FIRST SUBRACTIVE IDENTITY I HAVE LEARNT:

[math]

(cos(\alpha+\beta)-1)^2 + (sin(\alpha-\beta)-0)^2 = (cos\alpha-cos\beta)^2 + (sin\alpha-sin\beta)^2

[/math]

LEFT SIDE EXPAND:

[math]

cos^2(\alpha-\beta) - 2cos(\alpha - \beta) + 1 + sin^2(\alpha-\beta)

[/math]

THUS:

[math]

2 - 2cos(\alpha-\beta)

[/math]

RIGHT SIDE EXPAND:

[math]

cos^2{\alpha} - 2cos{\alpha}cos{\beta} + cos^2{\beta} + sin^2{\alpha} - 2sin{\alpha}sin{\beta} + sin^2{\beta}

[/math]

THUS:

[math]

2 - 2cos{\alpha}cos{\beta} - 2sin{\alpha}sin{\beta}

[/math]

COMPLETION OF BOTH SIDES:

[math]

2 - 2cos(\alpha-\beta) = 2 - 2cos{\alpha}cos{\beta} - 2sin{\alpha}sin{\beta}

[/math]

SIMPLFY:

[math]

cos(\alpha-\beta) = cos{\alpha}cos{\beta} + sin{\alpha}sin{\beta}

[/math]

 

There are 5 more additive/subractive identites but I'm not going to type all the processes right now. It took me awhile to type all the equations above.

:P

Link to comment
Share on other sites

Because [imath]

\cos(2x) = \cos(x+x) = \cos^2 x - \sin^2 x = (1-\sin^2 x) - \sin^2 x = 1 - 2\sin^2 x

[/imath]

 

I found out a different method to do this:

[math]

cos(a+a) = cos^2a - sin^2a = cos^2a - (1=cos^2a) = 2cos^2a-1

[/math]

 

Is the answer same as [math]1-2sin^2a[/math]?

Link to comment
Share on other sites

I have provided myself with more challenging question:

 

[math]\sin(3\alpha)[/math]

 

The answer I got was [math]2\sin{\alpha}\cos^2\cos{\alpha} + \cos^2{\alpha}\sin{\alpha} - \sin^3{\alpha}[/math]

 

Is this correct?

 

Given

 

[math]\sin(\alpha+\beta)=\sin(\alpha) \cdot \cos(\beta)+\sin(\beta) \cdot \cos(\alpha)[/math]

 

and

 

[math]\cos(\alpha+\beta)=\cos(\alpha) \cdot \cos(\beta) - \sin(\alpha) \cdot \sin(\beta)[/math]

 

and

 

[math]\sin^2(\alpha)+\cos^2(\alpha)=1[/math]

 

you can figure it out...

 

[math]\sin(3\alpha)=\sin(2\alpha+\alpha)[/math]

 

[math]\sin(2\alpha) \cdot \cos(\alpha)+\sin(\alpha) \cdot \cos(2\alpha)[/math]

 

[math]\sin(\alpha+\alpha) \cdot \cos(\alpha)+\sin(\alpha) \cdot \cos(\alpha+\alpha)[/math]

 

[math][\sin(\alpha) \cdot \cos(\alpha) + \sin(\alpha) \cdot \cos(\alpha)] \cdot \cos(\alpha)+\sin(\alpha) \cdot [\cos(\alpha) \cdot \cos(\alpha) - \sin(\alpha) \cdot sin(\alpha)][/math]

 

[math]2[\sin(\alpha) \cdot \cos(\alpha)] \cdot \cos(\alpha)+\sin(\alpha) \cdot [\cos^2(\alpha)- \sin^2(\alpha)][/math]

 

and if...

 

[math]\sin^2(\alpha)+\cos^2(\alpha)=1[/math]

 

Then

 

[math]\cos^2(\alpha)=1-\sin^2(\alpha)[/math]

 

[math]2[\sin(\alpha) \cdot \cos^2(\alpha)]+\sin(\alpha) \cdot [1-\sin^2(\alpha)- \sin^2(\alpha)][/math]

 

[math]2[\sin(\alpha) \cdot \cos^2(\alpha)]+\sin(\alpha) \cdot [1-2\sin^2(\alpha)][/math]

 

[math]2\sin(\alpha)[\cos^2(\alpha)+1-2\sin^2(\alpha)][/math]

 

[math]2\sin(\alpha)[1-\sin^2(\alpha)+1-2\sin^2(\alpha)][/math]

 

[math]2\sin(\alpha)[2-3\sin^2(\alpha)][/math]

 

[math]4\sin(\alpha)-6\sin^3(\alpha)[/math]

 

however... from this step...

 

[math]2[\sin(\alpha) \cdot \cos(\alpha)] \cdot \cos(\alpha)+\sin(\alpha) \cdot [\cos^2(\alpha)- \sin^2(\alpha)][/math]

 

[math]2\sin(\alpha)\cos^2(\alpha)+ \cos^2(\alpha)\sin(\alpha) - \sin^3(\alpha)[/math]

 

can be reached (which is slightly different from your answer), but my form is simpler!

 

(last step edited by realizing my mistake...)

Link to comment
Share on other sites

Sorry BobbyJoeCool I mistyped my answer!! :embarass:

I got the same answer as you did, but I did it in a shorter method than yours. Yours seem like forever to type!

 

THE WAY I DID WAS:

[math]

\sin(3\alpha) = \sin(2\alpha + \alpha)

[/math]

[math]

=\sin2{\alpha}\cos{\alpha} + \cos2{\alpha}\sin{\alpha}

[/math]

[math]

=(2\sin\alpha\cos\alpha)\cos\alpha + (\cos^2\alpha - \sin^2\alpha)\sin\alpha

[/math]

THEREFORE THE ANSWER IS:

[math]

\rightarrow2\sin\alpha\cos^2\alpha + \cos^2\alpha\sin\alpha - \sin^3\alpha

[/math]

Link to comment
Share on other sites

You're way isn't shorter... just you don't show all the steps like I did...

 

You got (2sin•cos)cos because

 

[math]\sin(2a)=\sin(a+a)=\sin(a)\cos(a)+\sin(a)\cos(a)=2\sin(a)\cos(a)[/math]

 

and

 

[math]\cos(2a)=\cos(a+a)=\sin(a)\sin(a)-\cos(a)\cos(a)=\sin^2(a)-\cos^2(a)[/math]

 

I mearly showed those steps, so it looks longer, and I still like my final form better! :)

Link to comment
Share on other sites

I HAVE A NEW QUESTION!! Give the exact value of each of the following: For example [math]\cos\frac{7\pi}{12}[/math].

 

Using the additive and subractive trigonometric identities to establish the exact value.

 

What I did was:

[math]\cos\frac{7\pi}{12} = 105[/math] degree

 

[math]\cos(\frac{\pi}{4} + \frac{\pi}{3}) = \cos\frac{\pi}{4}\cos\frac{\pi}{3} - \sin\frac{\pi}{4}\sin\frac{\pi}{3}

[/math]

[math]

(\frac{\sqrt2}{2})(\frac{1}{2}) - (\frac{\sqrt2}{2})(\frac{\sqrt3}{2})

[/math]

[math]

\frac{\sqrt2}{4} - \frac{\sqrt6}{4}

[/math]

[math]

\rightarrow\frac{\sqrt2 - \sqrt6}{4}

[/math]

 

So in the similar method above I don't know how to do this: [math]\sec\frac{-\pi}{12}[/math]??? Can anyone help me?

Link to comment
Share on other sites

Well, [math]\sec \frac{-\pi}{12} = \frac{1}{\cos \frac{-\pi}{12}}[/math]. Now since [math]\cos \frac{-\pi}{12} = \cos \frac{\pi}{12}[/math] and you've already evaluated [math]\cos\frac{\pi}{12}[/math] you can work out the answer :)

Link to comment
Share on other sites

I completely disagree with you dave. [math]\cos \frac{-\pi}{12}[/math] does not equal to [math] \cos \frac{\pi}{12}[/math].

 

To get [math]\sec\frac{-\pi}{12}[/math], you should have 45 degrees subract 60 degrees which would equal to minus 15 degrees. (-15 or [math]\frac{-\pi}{12}[/math]).

 

To change [math]\sec[/math], you have to get [math]\frac{1}{\cos}[/math]. Therefore,

 

[math]\frac{1}{\cos}(\frac{\pi}{4} - \frac{\pi}{3})[/math]

 

Expanding the [math]\cos[/math] subractive trig identity:

[math]

\frac{1}{\cos}(\cos\frac{\pi}{4}\cos\frac{\pi}{3} + \sin\frac{\pi}{4}\sin\frac{\pi}{3})

[/math]

 

[math]\rightarrow\frac{1}{(\frac{\sqrt2}{2})(\frac{1}{2}) + (\frac{\sqrt2}{2})(\frac{\sqrt3}{2})}

[/math]

 

[math]=\frac{1}{(\frac{\sqrt2}{4}) + (\frac{\sqrt6}{4})}[/math]

 

[math]=\frac{1}{(\frac{\sqrt2 + \sqrt6}{4})} = \frac{1}{1} \cdot \frac{4}{\sqrt2 + \sqrt6} = \frac{4}{\sqrt2 + \sqrt6}[/math]

 

Now I have to rationalize the demiantor:

[math]\frac{4}{\sqrt4 + \sqrt6} \cdot \frac{\sqrt2 - \sqrt6}{\sqrt2 - \sqrt6} = \frac{4\sqrt2 - 4\sqrt6}{2-6}

[/math]

 

[math]

\frac{4\sqrt2 - 4\sqrt6}{-4} = {-\sqrt2}{-\sqrt6}

[/math]

 

You agree with my answer or not?

:cool:

Link to comment
Share on other sites

[math]\cos{\tfrac{-\pi}{12}}=\frac{\sqrt{2}(\sqrt{3}+1)}{4}[/math]

 

[math]\cos{\tfrac{\pi}{12}}=\frac{\sqrt{2}(\sqrt{3}+1)}{4}[/math]

 

(Checked using TI-89 Graphing Calculator in Exact mode (AND radian mode)).

 

Think of the graph of cos... at x=0, y=1... it is symetrical as to the y-axis (as in, if you move the same distance from the y-axis in either direction, you have the same y value...)

 

Therefore, [imath]\cos{x}=\cos{-x}[/imath]

Link to comment
Share on other sites

I completely disagree with you dave. [math]\cos \frac{-\pi}{12}[/math] does not equal to [math] \cos \frac{\pi}{12}[/math].

 

To get [math]\sec\frac{-\pi}{12}[/math]' date=' you should have 45 degrees subract 60 degrees which would equal to minus 15 degrees. (-15 or [math']\frac{-\pi}{12}[/math]).

 

To change [math]\sec[/math], you have to get [math]\frac{1}{\cos}[/math]. Therefore,

 

[math]\frac{1}{\cos}(\frac{\pi}{4} - \frac{\pi}{3})[/math]

 

Expanding the [math]\cos[/math] subractive trig identity:

[math]

\frac{1}{\cos}(\cos\frac{\pi}{4}\cos\frac{\pi}{3} + \sin\frac{\pi}{4}\sin\frac{\pi}{3})

[/math]

 

[math]\rightarrow\frac{1}{(\frac{\sqrt2}{2})(\frac{1}{2}) + (\frac{\sqrt2}{2})(\frac{\sqrt3}{2})}

[/math]

 

[math]=\frac{1}{(\frac{\sqrt2}{4}) + (\frac{\sqrt6}{4})}[/math]

 

[math]=\frac{1}{(\frac{\sqrt2 + \sqrt6}{4})} = \frac{1}{1} \cdot \frac{4}{\sqrt2 + \sqrt6} = \frac{4}{\sqrt2 + \sqrt6}[/math]

 

Now I have to rationalize the demiantor:

[math]\frac{4}{\sqrt4 + \sqrt6} \cdot \frac{\sqrt2 - \sqrt6}{\sqrt2 - \sqrt6} = \frac{4\sqrt2 - 4\sqrt6}{2-6}

[/math]

 

[math]

\frac{4\sqrt2 - 4\sqrt6}{-4} = {-\sqrt2}{-\sqrt6}

[/math]

 

You agree with my answer or not?

:cool:

 

Now switch pi over 4 and pi over three so you get -pi over 12... you'll get the same answer!

Link to comment
Share on other sites

DUH. You're right about the cos function. I just completely forgot that it's an even function. :P Ok can you provide your "Now switch pi over 4 and pi over three so you get -pi over 12... you'll get the same answer!" in equations? I don't really understand where you are talking about. Thanks

Link to comment
Share on other sites

Frankly you've done a lot of hard work for very little reason. You have already calculated the value of [math]\cos \frac{\pi}{12}[/math]. So now, use a series of easy arithmetic relations to get your answer:

 

[math]\sec \frac{-\pi}{12} = \frac{1}{\cos \frac{-\pi}{12}} = \frac{1}{\cos \frac{\pi}{12}}[/math]

 

Substitute in your answer and you're done.

Link to comment
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.