John2020 Posted September 24, 2020 Share Posted September 24, 2020 (edited) \[\frac{\Delta y}{\Delta x} = \frac{f(x+h)- f(x)}{h}\] \[\Delta y \] \[ y = \int f(x) dx \] Edited September 24, 2020 by John2020 Link to comment Share on other sites More sharing options...
John2020 Posted September 27, 2020 Author Share Posted September 27, 2020 (edited) Some further tests: \[\sum \vec{F}_{T} = \frac{\sum \vec{\tau}_{T}}{|\left(\vec{r}_{A} - \vec{r}_{R} \right)|}\] Edited September 27, 2020 by John2020 Link to comment Share on other sites More sharing options...
John2020 Posted September 27, 2020 Author Share Posted September 27, 2020 (edited) Some further tests: Edited September 27, 2020 by John2020 Link to comment Share on other sites More sharing options...
Eise Posted October 9, 2020 Share Posted October 9, 2020 (edited) Testing relativity formulas for the thread which name we do not mention... \[ t = \frac{{t}' + \frac{v{x}'}{c^{2}}}{\sqrt{1 - \frac{v^{2}}{c^{2}}}} \] \[t = \frac{{0} + {0.8} . {0.6} }{\sqrt{1 - {0.8 ^{2}}}}\] Edited October 9, 2020 by Eise Link to comment Share on other sites More sharing options...
joigus Posted April 8, 2021 Share Posted April 8, 2021 (edited) Testing more stuff. \[ f\left(x\right)=\begin{cases} 1, & x\in\mathbb{Q}\\ -1, & x\in\mathbb{R}-\mathbb{Q} \end{cases} \] Testing more stuff. \[ \textrm{int}C\neq\textrm{Ø}\Rightarrow\textrm{if }x\in C\Rightarrow\in B_{\epsilon}\left(x\right)\subseteq C\Rightarrow\mu\left(C\right)\geq\mu\left(B_{\epsilon}\left(x\right)\right)>0 \] Edited April 8, 2021 by joigus Link to comment Share on other sites More sharing options...
joigus Posted April 9, 2021 Share Posted April 9, 2021 Rather: \[ \textrm{int}C\neq\textrm{Ø}\Rightarrow\textrm{if }x\in C\Rightarrow B_{\epsilon}\left(x\right)\subseteq C\Rightarrow\mu\left(C\right)\geq\mu\left(B_{\epsilon}\left(x\right)\right)>0 \] Link to comment Share on other sites More sharing options...
joigus Posted June 4, 2021 Share Posted June 4, 2021 (edited) Total energy: \[E=\frac{mc^{2}}{\sqrt{1-v^{2}/c^{2}}}\] Rest energy: \[E_{0}=mc^{2}\] Kinetic energy: \[\textrm{K.E.}=\frac{mc^{2}}{\sqrt{1-v^{2}/c^{2}}}-mc^{2}\] Edited June 4, 2021 by joigus Link to comment Share on other sites More sharing options...
Orion1 Posted July 4, 2021 Share Posted July 4, 2021 (edited) [math]\begin{align} \text{text} \end{align}[/math] [math]\color{blue}{\text{text}}[/math] text [math]F = ma[/math] Edited July 4, 2021 by Orion1 Link to comment Share on other sites More sharing options...
Orion1 Posted July 4, 2021 Share Posted July 4, 2021 (edited) ... Edited July 4, 2021 by Orion1 Link to comment Share on other sites More sharing options...
joigus Posted July 4, 2021 Share Posted July 4, 2021 (edited) \[\int (f(x)+ dy/2)dx= \int f(x)dx+ \frac{1}{2}\int dydx\] \[ \frac{1}{2}\int dydx \] Inline: \( dy\left( x \right) = y'\left( x \right) dx \). Edited July 4, 2021 by joigus Link to comment Share on other sites More sharing options...
Orion1 Posted July 5, 2021 Share Posted July 5, 2021 (edited) 17 hours ago, joigus said: ∫(f(x)+dy/2)dx=∫f(x)dx+12∫dydx 12∫dydx Inline: dy(x)=y′(x)dx . @joigus, how did you center your equations? I cannot get \begin{center} command to work. Edited July 5, 2021 by Orion1 Link to comment Share on other sites More sharing options...
joigus Posted July 5, 2021 Share Posted July 5, 2021 1 hour ago, Orion1 said: @joigus, how did you center your equations? I cannot get \begin{center} command to work. I just use \[ (and the closing square brace) for centred (display) equations and \( (and its closing round brace) for inline maths. It seems to interact well with the MathJax "engine". Link to comment Share on other sites More sharing options...
Orion1 Posted July 5, 2021 Share Posted July 5, 2021 (edited) y=∫f(x)dx Thanks joigus! \[ \color{blue}{\text{test}} \] Edited July 5, 2021 by Orion1 Link to comment Share on other sites More sharing options...
Orion1 Posted July 5, 2021 Share Posted July 5, 2021 (edited) ... Edited July 5, 2021 by Orion1 Link to comment Share on other sites More sharing options...
joigus Posted August 10, 2022 Share Posted August 10, 2022 \[ {\not}R \] Link to comment Share on other sites More sharing options...
joigus Posted November 5, 2022 Share Posted November 5, 2022 Overlapping symbols test: \mathclap{\fullmoon}\fullmoon \[ \mathclap{\fullmoon}\fullmoon \] Pitty. Link to comment Share on other sites More sharing options...
Ghideon Posted November 5, 2022 Share Posted November 5, 2022 (edited) Source: [math]\begin{displaymath} T=\sum_{ \mathclap{\substack{i_1,\ldots,i_n=1 \\ j_1,\ldots,j_m=1}}}^d T_{j_1,\ldots,j_m}^{i_1,\ldots,i_n} E_{i_1,\ldots,i_n}^{j_1,\ldots,j_m} \end{displaymath}[/math] [math]\begin{displaymath} T=\sum_{ i_1,\ldots,i_n,j_1,\ldots,j_m=1}^d \; T_{j_1,\ldots,j_m}^{i_1,\ldots,i_n} E_{i_1,\ldots,i_n}^{j_1,\ldots,j_m} \end{displaymath[/math] Source: \begin{displaymath} T=\sum_{ i_1,\ldots,i_n,j_1,\ldots,j_m=1}^d \; T_{j_1,\ldots,j_m}^{i_1,\ldots,i_n} E_{i_1,\ldots,i_n}^{j_1,\ldots,j_m} \end{displaymath} Test result: [math]\begin{displaymath} T=\sum_{ i_1,\ldots,i_n,j_1,\ldots,j_m=1}^d \; T_{j_1,\ldots,j_m}^{i_1,\ldots,i_n} E_{i_1,\ldots,i_n}^{j_1,\ldots,j_m} \end{displaymath}[/math] Expected result: (I got curious about @joigus test... wanted to learn) Edited November 5, 2022 by Ghideon trial & error Link to comment Share on other sites More sharing options...
joigus Posted November 12, 2022 Share Posted November 12, 2022 Maybe this one works for "male" and "female"? \male Undefined control sequence \male \female Undefined control sequence \female DDo On 11/5/2022 at 2:35 PM, Ghideon said: Source: [math]\begin{displaymath} T=\sum_{ \mathclap{\substack{i_1,\ldots,i_n=1 \\ j_1,\ldots,j_m=1}}}^d T_{j_1,\ldots,j_m}^{i_1,\ldots,i_n} E_{i_1,\ldots,i_n}^{j_1,\ldots,j_m} \end{displaymath}[/math] Unknown environment 'displaymath' Source: \begin{displaymath} T=\sum_{ i_1,\ldots,i_n,j_1,\ldots,j_m=1}^d \; T_{j_1,\ldots,j_m}^{i_1,\ldots,i_n} E_{i_1,\ldots,i_n}^{j_1,\ldots,j_m} \end{displaymath} Test result: Unknown environment 'displaymath' Expected result: (I got curious about @joigus test... wanted to learn) I think you don't need environment "displaymath" for that one. Simply: \[ T=\sum_{\begin{array}{c} i_{1},\cdots,i_{n}=1\\ j_{1},\cdots,j_{m}=1 \end{array}}^{d}T_{i_{1}\cdots i_{n}}^{j_{1}\cdots j_{m}}E_{j_{1}\cdots j_{m}}^{i_{1}\cdots i_{n}} \] should work. Let's see: \[ T=\sum_{\begin{array}{c} i_{1},\cdots,i_{n}=1\\ j_{1},\cdots,j_{m}=1 \end{array}}^{d}T_{i_{1}\cdots i_{n}}^{j_{1}\cdots j_{m}}E_{j_{1}\cdots j_{m}}^{i_{1}\cdots i_{n}} \] Link to comment Share on other sites More sharing options...
Mordred Posted December 9, 2022 Share Posted December 9, 2022 (edited) \[\frac{1}{2}\] Edited December 9, 2022 by Mordred Link to comment Share on other sites More sharing options...
Mordred Posted December 14, 2022 Share Posted December 14, 2022 (edited) \[\array{ \mathfrak{g} \times X && \overset{R}{\longrightarrow} && T X \\ & {\llap{pr_2}}\searrow && \swarrow_{\rlap{p}} \\ && X }\] \[{\small\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline Particle& Spin & g & Q &B&L_e &L_\mu&M (Mev)&\tau\\\hline \gamma&1&2&0&0&0&0&<3*10^{-33}&stable\\\hline e^-&1/2&2&-1&0&1&0&0.511&>2*10^{22}yrs\\\hline e+&1/2&2&1&0&-1&0&0.511&>2*10^{22}yrs\\\hline v_e&1/2&1&0&0&1&0&,5*10^{-5}&stable\\\hline \overline{v}_e&1/2&1&0&0&-1&0&<5*10^{-5}&stable\\\hline \mu^-&1/2&2&-1&0&0&1&105.7&2.2*10^{-6}sec\\\hline \mu^+&1/2&2&1&0&0&-1&105.7&2.2*10^{-5}sec\\\hline v_\mu&1/2&1&0&0&0&1&<0.25&>10^{32}yrs\\\hline \overline{v}_\mu&1/2&1&0&0&0&-1&<0.25&>10^{32}yrs \\\hline p&1/2&2&1&1&0&0&938.3&.10^{32}yrs\\\hline \overline{p}&1/2&2&-1&-1&0&0&938.3&>10^{32}yrs\\\hline n&1/2&2&0&1&0&0&939.6&898 sec\\\hline \overline{n}&1/2&2&&*-1&0&0&939.6&898 sec\\\hline \pi^0+&0&1&1&0&0&0&139.6&1.39*10^{-8}sec\\\hline \pi^-&0&1&0&0&0&0&135.0&8.7*10^{-17}sec\\\hline \pi^+&0&1&-1&0&0&0&139.6&2.6*10^{-8}sec\\\hline\end{array}}\] Edited January 1 by Mordred Link to comment Share on other sites More sharing options...
joigus Posted February 20 Share Posted February 20 \[ \overset{m^{2}c^{4}}{\overbrace{E^{2}-c^{2}\boldsymbol{p}^{2}}}+\overset{0}{\overbrace{\hbar^{2}\omega^{2}-c^{2}\hbar^{2}\boldsymbol{k}^{2}}}+2\hbar E\omega-2c^{2}\hbar\boldsymbol{p}\cdot\boldsymbol{k}=m^{2}c^{4} \] OK then. Link to comment Share on other sites More sharing options...
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now