Jump to content

triclino

Senior Members
  • Posts

    285
  • Joined

  • Last visited

Posts posted by triclino

  1. You should find that the determinant is negative if b is within a certain range of values. I make it [hide]4−2√3< b < 4+2√3[/hide] In this case, the inequality is satisfied for all real values of a.

     

     

    How about a=0 .Is not the inequality satisfied for all values of b??

  2. It is understandable that the problems that I bring to the attention of the forum are problems that i cannot solve .

     

    Hence the expression :" solve this"

     

    There also problems that i have an idea of their proof but i am not quite sure .

     

    Definitely none of them are homework since i am not a candidate of any educational institute neither am i planning to become one.

  3. If the determinant is negative (treating the LHS as a quadratic in a), then the inequality holds for all real values of a.

     

    How about, b .

     

    For what values of b does the inequality hold??

  4. Use the following rules:

     

    [math]a\Leftrightarrow b\ \equiv\ (a\wedge b)\vee(\neg a\wedge \neg b)[/math]

     

    [math]\neg(a\Leftrightarrow b)\ \equiv\ (a\wedge \neg b)\vee(\neg a\wedge b)[/math]

     

    Thus: [math]\neg[(p\Leftrightarrow q)\Rightarrow r][/math]

     

    [math]\implies\ (p\Leftrightarrow q)\wedge\neg r[/math]

     

    [math]\implies\ [(p\wedge q)\vee(\neg p\wedge\neg q)]\wedge\neg r[/math]

     

    [math]\implies\ [(p\wedge q)\wedge\neg r]\vee[(\neg p\wedge\neg q)\wedge\neg r][/math]

     

    [math]\implies\ [p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)][/math]

     

    [math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}\vee\{[p\wedge(\neg q\wedge r)]\vee[\neg p\wedge(q\wedge r)]\}[/math]

     

    [math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[p\wedge(\neg q\wedge r)]\}\vee\{[\neg p\wedge(q\wedge r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}[/math]

     

    [math]\implies\ \{p\wedge[(q\wedge\neg r)\vee(\neg q\wedge r)]\}\wedge\{\neg p\wedge[(q\wedge r)\vee(\neg q\wedge\neg r)]\}[/math]

     

    [math]\implies\ [p\wedge\neg(q\Leftrightarrow r)]\wedge[\neg p\wedge(q\Leftrightarrow r)][/math]

     

    [math]\implies\ \neg[p\Leftrightarrow(q\Leftrightarrow r)][/math]

     

    So now let us examine your proof:

     

    According to your rule (which you must show how you get):

     

    [math]\neg(a\Leftrightarrow b)\ \equiv\ (a\wedge \neg b)\vee(\neg a\wedge b)[/math]

     

    To get :[math] \neg[p\Leftrightarrow(q\Leftrightarrow r)][/math]

     

    You must have :[math] [p\wedge\neg(q\Leftrightarrow r)]\vee[\neg p\wedge(q\Leftrightarrow r)][/math]

     

    Instead of [math] [p\wedge\neg(q\Leftrightarrow r)]\wedge[\neg p\wedge(q\Leftrightarrow r)][/math]

     

    That you have in your proof

  5. Find the reals x,y,z satisfying the following equations:

     

    1) x+y+z = 0

     

    2) [math] x^3 + y^3 + z^3 = 3xyz[/math]

     

    3) xy + yz + xz = [math]a^2[/math] when a=0 and when [math]a\neq 0[/math]

  6. Use the following rules:

     

    [math]a\Leftrightarrow b\ \equiv\ (a\wedge b)\vee(\neg a\wedge \neg b)[/math]

     

    [math]\neg(a\Leftrightarrow b)\ \equiv\ (a\wedge \neg b)\vee(\neg a\wedge b)[/math]

     

    Thus: [math]\neg[(p\Leftrightarrow q)\Rightarrow r][/math]

     

    [math]\implies\ (p\Leftrightarrow q)\wedge\neg r[/math]

     

    [math]\implies\ [(p\wedge q)\vee(\neg p\wedge\neg q)]\wedge\neg r[/math]

     

    [math]\implies\ [(p\wedge q)\wedge\neg r]\vee[(\neg p\wedge\neg q)\wedge\neg r][/math]

     

    [math]\implies\ [p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)][/math]

     

    [math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}\vee\{[p\wedge(\neg q\wedge r)]\vee[\neg p\wedge(q\wedge r)]\}[/math]

     

    [math]\implies\ \{[p\wedge(q\wedge\neg r)]\vee[p\wedge(\neg q\wedge r)]\}\vee\{[\neg p\wedge(q\wedge r)]\vee[\neg p\wedge(\neg q\wedge\neg r)]\}[/math]

     

    [math]\implies\ \{p\wedge[(q\wedge\neg r)\vee(\neg q\wedge r)]\}\wedge\{\neg p\wedge[(q\wedge r)\vee(\neg q\wedge\neg r)]\}[/math]

     

    [math]\implies\ [p\wedge\neg(q\Leftrightarrow r)]\wedge[\neg p\wedge(q\Leftrightarrow r)][/math]

     

    [math]\implies\ \neg[p\Leftrightarrow(q\Leftrightarrow r)][/math]

     

    Where is the contradiction

  7. A contradiction is any statement that is unsatisfiable.

     

    x=0 and x=1 is unsatisfiable. It is a contradiction.

     

     

    You are entangling False with contradiction .

     

    x=0 and x=1 is simply a false statement.

     

    This is basic stuff in Symbolic Logic, you better learn about it .

  8. The contradiction here is x=0 and x=1. Think about it.

     

     

    Contradiction is: [math]q\wedge\neg q[/math]

     

    q here is 1=0 and not q is [math]1\neq 0[/math]

     

    You thing twice about it

     

    [math]1\neq 0[/math] is a field axiom

     

    (x=0 and x=1) is equivalent to 1=0 ,and not(x=0 and x=1) is equivalent to:[math]1\neq 0[/math]

  9. No you can't, triclino. x=0 and x=1 implies absolutely nothing. .

     

    On the contrary D.H contradiction can imply everything.

     

    Thru disjunction syllogism as Tree pointed out you can imply everything.

     

    Learn disjunction syllogism.

     

    The contradiction here is: (x=0 and x=1) and not( x=0 and x=1)

  10. Roughly:

     

    Taking not(x=0 and x=1) as given,

     

    ( (x>0 and x=1) or ( x=0 and x=1) ) and not(x=0 and x=1)

    =>

    (x>0 and x=1)

     

    by disjunctive syllogism.

     

    On the other hand i could use disjunctive syllogism and end up with : 2>2

     

    Since x=0 and x=1 => 0=1 => (0=1) or |x+y|>2 and not (0=1) => |x+y|>2.

     

    But since [math]|x+y|\leq 2[/math] ,then : [math]2<|x+y|\leq 2[/math] .Which of course results in 2>2

  11. In proving : [math] x+y\leq 2[/math] given that : [math]0\leq x\leq 1[/math] and y=1,the following proof is pursued:

     

    Since [math]0\leq x\leq 1[/math] ,then (x>0 or x=0)and (x<1 or x=1) ,which according to logic is equivalent to:

     

    (x>0 and x<1) or (x>0 and x=1) or (x=0 and x<1) or ( x=0 and x=1).

     

    And in examining the three cases ( except the 4th one : x=0 and x=1) we end up with :

     

    [math] x+y\leq 2[/math].

     

    The question now is : how do we examine the 4th case so to end up with [math] x+y\leq 2[/math]??

  12. Oops. I misread your post. I thought you said f(x) = 1 if x is irrational, 0 if x is rational. That function integrates to F(x)=x+c. That is the standard gotcha problem used to introduce Lebesgue integration.

     

    You switched the values so that f(x)=1 if x is rational, 0 if x is irrational. This function is zero almost everywhere. It integrates to a constant.

     

     

    Which is then the function F(x) whose derivative is equal to our function f(x),

     

    so that the differential f(x)dx is exact??

×
×
  • Create New...

Important Information

We have placed cookies on your device to help make this website better. You can adjust your cookie settings, otherwise we'll assume you're okay to continue.