Sign in to follow this  
kwrk

test

Recommended Posts

Posted (edited)

[math]y=x^2[/math]

[math]\alpha_0=\alpha[/math]

[math]\alpha[/math]

[math]y=x^2[/math]

[math]y=x^2[/math]

[math]W_n / W_{ref} = (y_l^m)^{-1/3} \Pi_{k=0}^n\alpha_0^{ (-1/3^k)}[/math]

[math]y=x^2[/math]

Edited by kwrk

Share this post


Link to post
Share on other sites
Posted (edited)

[math]y=x^2[/math]

[math]\psi\Psi[/math]

[math]W_n / W_{ref} = (y_l^m)^{-1/3} \pi_{k=0}^n\alpha_0^{ (-1/3^k)}[/math]

[math]W_n/W_{ref}=(y_l^m)^{-1/3}\pi_{k=0}^n\alpha_0^{(-1/3^k)}[/math]

[math]W_n / W_{ref} = (y_l^m)^{-1/3} \Pi_{k=0}^n\alpha_0^{ (-1/3^k)}[/math]

Edited by kwrk

Share this post


Link to post
Share on other sites
Posted (edited)

[math]W_n/W_e ={1.509}(y_l^m)^{-1/3}\Pi_{k=0}^n\alpha^{-{1/3}^k}[/math], y=1 for spherical, y=1/3 for 1st angular symmetry.

 [math]\alpha[/math]

[math] g_a g_D \hbar/2[/math]

[math] \hbar/2[/math]

[math]W_n/W_{ref}=(y_l^m)^{-1/3}\Pi_{k=0}^n\alpha_0^{(-1/3^k)}[/math]

[math]W_n/W_{ref}=(y_l^m)^{-1/3}\Pi_{k=0}^n\alpha_0^{(-1/3^k)}[/math]

Wn/Wref=(yml)−1/3Πnk=0α(−1/3k

 

Edited by kwrk

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

Sign in to follow this