They work in three departments:

Each of them has a different choice of sports from Football, Cricket, Volleyball, Badminton, Lawn Tennis, Basketball, Hockey and Table Tennis not necessarily in the same order.

1.Dan works in

2.Fay works in

3.Earl and Harry do not work in the same department as Dan.

4.Carol likes Hockey and does not work in

5.George does not work in

6.One of those who work in

7.The one who likes Volleyball works in

8.None of those who work in

9.Harry does not like Cricket.

Who are the employees who work in the **Administration** Department?

In which Department does **Earl** work?

He chalked a **green** cross on all three foreheads. *"Go!"*

All three hands shot up in air ; that of **Chuckles** was almost immediately lowered. *"My cross is green , Sir"*

More at https://spirit-of-genius.blogspot.in/2017/07/mind-blowing-brain-teaser.html

]]>
**Albert** and **Bernard** just became friends with **Cheryl**, and they want to know when her birthday is. **Cheryl** gives them a list of 10 possible dates.

May 15 | May 16 | May 19 |

June 17 | June 18 | |

July 14 | July 16 | |

August 14 | August 15 | August 17 |

**Cheryl **then tells **Albert** and **Bernard** separately the **month** and the **day** of her birthday respectively.**Albert:** *I don't know when Cheryl's birthday is, but I know that Bernard does not know too.*

So when is

Also, no two students got the same number of correct answers. Can you tell the correct answer? Also, what are their

This is the roll I mean:

]]>

]]>

I'm going to give you good people a senario, i want you to tell me how it came about (im looking for alot of info, the how, why, where all that good stuff).

__The Riddle!__

A gentleman walks into a resteraunt and orders turtle soup, has one taste, and the leaves. Why?

__The Rules__

1. I may only answer yes, or no to any question asked.

2. If you know the answer to this then please dont spoil it for the other members.

3. Please dont google, it ruins the fun.

Also please consider that i wont be able to instantly reply, be patient. And this may take a while, the answer is very complex!

]]>

A bicycle with 26" wheels and axles 34" apart, traveling in a straight line runs through a spot of wet paint... how far apart will the subsequent spots made by the front and back tires be?

Do NOT over think this!

]]>

PS: Had no clue where to post this and hence here!

]]>

This is a CASCADED VERSION with LOOSE ONION PEELS DESIGN in that : The Middle Core 3x3 Square is a Magic Square using 9 numbers from 1-81

This is enveloped by a 5x5 Magic Square using 16 more numbers in addition to the 9 numbers already used in the core 3x3 MS thus using a total of 25 numbers out of 1-81

This 5x5 MS is further enveloped by a 7x7 Magic Square adding another 24 numbers thus using a total of 49 numbers out of 1-81

Finally this 7x7 MS is enveloped by a 9x9 Overall Magic Square using all numbers 1-81

To illustrate please see the figure :

This illustrates how each colored Core forms a 3x3 5x5 7x7 & 9x9 Magic Square respectively !

It can also be seen that each of these Magic Squares as well as these Sleeves can be rotated & still have a Magic Square & therefore there are many Solutions Possible

To Illustrate further I give a Sample 9x9 1-81 Magic Square and analyze for illustration how it will add up in the smaller Squares within

We can see here a 9x9 Sample Magic Square and to help add the Columns Rows & Diagonals I have indicated their Totals too.

We can see that the Overall MS adds to the Magic Sum of 369 correctly where us the Component 3x3 5x5 & 7x7 Squares are not Magic Squares

The Solution to the Puzzle requires all of these Components to be Magic Squares with Most likely Magic Sums of 123, 205,287 & 369 respectively ! There could be many Solutions

**Puzzle 1** : Find a Solution with 1-81 numbers so arranged that we have 3x3 5x5 7x7 & 9x9 Magic Squares cascaded like illustrated

**Puzzle 2** : Find a Solution with 1-81 numbers so arranged that we have 3x3 5x5 7x7 & 9x9 Magic Squares cascaded like illustrated with each Magic Square having Sequential numbers. Like 3x3 MS with numbers 1-9 or 37 - 45 etc followed by 5x5 MS with 1-25 or 29-53 and so on.

Like in the above sample 9x9 MS has sequential numbers from 1-81

Similarly the component 3x3 5x5 & 7x7 each must have a sequential Block of numbers out of 1-81 3x3 MS need not start with 1 [perhaps can not]

]]>

Three prisoners were brought into a room and each was ordered to put on a blindfold and reach into a duffel bag and take a hat and put it on his head. In the duffel bag were two red hats and three black hats.

After removing the hats and putting one on his own head, the first prisoner was ordered to take off his blindfold, permitting him to see the other two prisoners' hats, but not his own. If he could tell the color of the hat on his own head, he would be pardoned immediately. If he guessed, and was incorrect, he would be shot immediately. So nobody guesses.

After removing blindfolds,

First prisoner: "I don't know."

Second prisoner: "I don't know."

Third prisoner, who is blind: "I know."

Does he? Explain.

]]>which add up to the Magic Sum of 65 every Row Column or Diagonal

However the 9 Middle Numbers ie the Core 3x3 Squares are not a

3x3 Magic Square

Rearrange the Numbers 1-25 in such a way that we have a 5x5 Magic

Square with a Magic Sum of 65 & the middle 9 numbers form a

3x3 Magic Square !

]]>

Except that just one of these Balls is DEFECTIVE and has a DIFFERENT WEIGHT compared to the Rest of the Balls.

We don’t know whether this Defective Balls is HEAVIER or LIGHTER in Weight.

We also don’t know which is this Ball out of the 39.

We have Only a SIMPLE BLALANCE and nothing else to use [No Weight Units etc]

Some of these Balls can by weighed in the scale against each other and any Inference taken counts for one Weighing !

In how many weighings can you detect the Defective Ball and what is the Procedure ?

Remember, you need to also find whether that Defective Ball is Lighter or Heavier than the others within the same number of Weighings !!

]]>Maybe is someone interested.

I orderded the hedgehog in a cage after seeing the video.

Really like this puzzle.

**url deleted - no advertising **

A and B are two points on the surface of the Earth which are connected by a straight tunnel.

Both A and B are on the same side of the centre of the Earth.

Alice rolls a ball into the tunnel at A.

How long will it take the ball to reach B, neglecting frictional resistances?

Take the radius of the Earth as 4000miles and g = 32 ft/sc^{2}

Using known pseudo random number generators and commutative encryption algorithms that works with a single private key to both encrypt and decrypt messages, provide a logical method that achieves the following:

- They can use normal text email
- Trusted third party not required
- No keys need to be shared
- Secure at least to the level of perfect encryption.
- No one else can modify their messages without their knowing it
- No one else can block their messages without their knowing it
- No tricks or gimmicks
- Solution is apparently real AFAIK, though I've never been able to have it vetted it.

- Uses Commmutative Encryption, (encryption order doesn't matter)
- sources of apparrent entropy must be reproducable when using the same PRNG key.
- After a long delay, I Decided it was finally safe to post this once I saw the last piece of the complete solution posted on a well known, respectable website.
- solved (without realiizing it) while working on an unrelated project (at least in purpose, if not in method ) which I was publicly sharing at the time in a twoplustwo poker theory forum under username TakenItEasy
http://forumserver.twoplustwo.com/15/poker-theory/rig-proofing-poker-sites-possible-1476320/

- Wow, I just read through some of that old thread and saw that I had so many wrong ideas in the beginning. In fact, the final solution was never posted, though it had gotten pretty close. Remember, the solution to this riddle is related to providing a perfect encryption method. I was trying to solve a rigg-proof card dealing method for on-line poker. The solution is embeded in the poker dealing method, but It's far from obvious. I didn't see it myself for over a year, I think.
- Disclaimer, I am not a cryptographer though I do have a gift for logic, which isnt giving you much reason to trust me. Trust is not an easy problem to solve, and since I'm not a professional, I need to warn you that I don't know any vetting techniques either.
If you like solving logic riddles you probably know its quite a bit tougher if you don't actually know if there is a solution. It's a matter of not knowing when to quit. Since I hate quiting but I wouldn't want to spend eternity trying to solve an unsolvable problem either, I never try to solve any problem without a known solution. Unless, of course I had to solve a problem as part of the goals I was tring to achieve, (and still trying)

Therefore, I've listed all the sources that should provide the answer. You can treat them as more hints if you like, though reading just the first one is a major spoiler so you may want to wait till you've tried to solve the problem. It's probably one of the tougher problems I've solved but theres really not much to the answer either. logic is both strange and ficle. The more effort you put into it the more elegant and transparent a solution becomes. Eventually you realize that It's kind of like having all the right skills, knowledge, and experience all at the same time. Eventually the last piece falls into place and you just get hit with an epiphany. It's just like poker, when you suddenly get a strong hunch, which never seems to fail. Thats when all the right experiences, all the right skills, and all the right knowledge are collected together. Missing a single piece could leave you without a solution. or skills may take you part of the way filling in some of the gaps. But inevitibly it seems to always fall on having the last piece, once you have everything, then the solution just hits you seemingly out of nowhere and you just know the solution.

Problem solving is probably my greatest gift, and fmortune really does follow the prepaired, but theire's also a certain element of luck to it as well, and you may anlready have everything you need to solve the problem, despite no one solving it for a very long time, which is a lot like poker. So while fortune definitely does follow the prepaired, I can definitely also say, you just never know until you try, and just like anything else, the more you try the better you get at trying.

- Mental Poker (note the connection to the origional problem I was trying to solve.)
- Three Pass Protocol (written by the same authors of Mental Poker)
- Perfect Encryption (the last step)
- One Time Pad (kind of built into Perfect encryption. I don't think it's actually necessary, but since I havent completely vetted the solution myself (I wouldn't know how), I list it just in case.
As you know, Heisenberg showed that nothing is completely certain. As someone else said, there's no such thing as perfect security. Yeah, I saw this myself, but not in any relavent way, which makes me think people are just looking for something to blame. As I saw it, it's much more like Heisenberg Uncertainty then in any way that is relavent, at least in the near future.

Computers may be starting to approach their limits, though I haven't followed computer tech since I retired a long time ago, I did know something about it. As far as Quantum computers go. I doubt anyone here has access, so, for arguements sake, at least for the purposes of solving this interesting puzzle (IMO) let's assume they don't exist.

Cross posted in the twoplustwo puzzles forum under user name TakenItEasy (not TakenItSeriously)

]]>

What is the product for** unanswered** = ?

Deal them , face up, in 3 vertical columns in this sequence: 1st card 2nd card 3rd card

4th card 5th card 6th card

7th card and so on. .........

........... ................ 21st card.

Note which column has the Joker in it.

Now, carefully gather the separate columns into 3 separate piles, making sure to keep the cards in the order they were dealt.( It helps if the cards in the vertical columns are dealt slightly on top of each other ),

Next, put the 3 piles together, making sure that the pile containing the Joker is placed between the other 2 piles

Turn the joined pile over, ready to deal again.

Repeat this whole process 2 more times.

After the joined pile is turned over for third time , discard the top10 cards in the joined pile and also the bottom 10 cards in the pile.

The card left in your hand, the 11th card,is the Joker.

How does this happen?

note: if you want to go through the whole process again, give the 21 cards another good shuffle so that the Joker is not the 11th card to begin with and, by the way, i don't know how this trick works myself!

]]>

In those British Rule days in India Pounds [ Lbs ] are used to weigh the merchandise.

The Hawker has a Simple Balance which he uses to weigh his merchandise to sell to his Customers..

But he has only one Measure of Weight which weighs 40 Pounds !

He needed Units of weight with which he can measure out 1, 2, 3 etc upto 40 Lbs in one weighing !

Of Course he can put a weight or pieces of weight in one Pan while the other Pan can contain the merchandise and weights if needed.

If he can CUT THE WEIGHT into 40 equal parts each weighing 1 Lb he can weigh out upto 40 pounds in one weighing but then it will be a laborious process.

He asked me to cut the 40 Lbs weight into minimum number weights with which he can handle 1,2,3,4,5 etc upto 40 Lbs in one weighing !

How many pieces I had to cut the 40 Lbs weight into and what are the weights of each Piece and how can he weigh out 1,2,3 etc upto 40 Pounds of merchandise in one weighing using those Pieces of Weight ?

]]>Momma bear asked Goldilock to divide the whole round cake into 3 equal pieces. So The girl marked 3 equally distanced points around its perimeter in order to make

3 slices from the center (where the candle is) to the markers. But before she can do the first slice Poppa bear asked her to do it with just 2 slices if she can.

So Goldilock bent the knife into 120 degrees angle in order to make a 1/3 piece on first slice (with knife vertex on the center) and two more equal 1/3 pieces from the remaining part with the second slice.But before she can do the first slice Little bear asked her to do it already with only 1 slice. So how did Goldilock divide the cake into 3 equal pieces with a single slice? (see illustration)

]]>A palindrome is a number which reads the same backward or forward (e.g. 434, 87678, etc.). Could you prove that for any integer n (not divisible by 10) there is a palindrome (in decimal representation) divisible by n?

***

I've checked for all numbers up to 162, it's true:

81* 12345679= 999999999

162*172839506=27999999972

Is there any simple proof for any integer?

]]>